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Preface

 intends to 
build up a text suitable to be used as lecture material for postgraduate 
students and a reference for research scientists and engineers interested 
in advanced numerical simulations of fluid flow problems and the associ-
ated numerical methods. Direct numerical simulation (DNS) and large-
eddy simulation (LES) are advanced numerical tools for computational 
fluid dynamics (CFD), which have developed enormously over the last 
few decades. In comparison to traditional CFD based on the Reynolds-
averaged Navier–Stokes (RANS) modeling approach, DNS and LES offer 
much enhanced capability in predicting the unsteady features of the flow 
field, such as the vortical structures, and provide very detailed solution of 
the flow field that can be used not only to obtain a better understanding 
but also to develop models for mixing and turbulence. DNS and LES aim 
to simulate fluid flows with high fidelity using high-resolution numerical 
methods. In many cases, DNS can obtain results that are not possible using 
any other means, while LES is being adopted by industry as an advanced 
tool for practical applications.

The main themes of this book are the numerical needs arising from 
applications of DNS and LES. This book covers the basic techniques for 
DNS and LES that can be applied to practical problems in the field of 
flow, turbulence, and combustion. The book includes specific numeri-
cal techniques for compressible and incompressible flows. It focuses on 
numerical methods that are suitable to three-dimensional flows, rather 
than specific numerical methods for one- or two-dimensional flows. The 
book is intended to provide fundamental knowledge on numerical tech-
niques for DNS and LES—for example, high-order discretization schemes, 
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high-fidelity boundary conditions, and coupling aspects—in order to help 
the readers understand the details of the numerical methods used in DNS 
and LES and the substantial amount of literature in the field. The book is 
limited to explaining the numerical techniques concisely so that most of 
the relevant numerical techniques for DNS and LES can be discussed. Of 
particular interest in the text are the sample numerical simulation results 
given in the relevant chapters, which exemplify the practical applications 
of the numerical techniques under discussion.

The text has been organized in a way that is easy to understand for 
postgraduate students with a basic knowledge of CFD. In fact, most of 
the materials included in this book have evolved from our lecture notes 
and other teaching materials. The numerical techniques presented are 
not intended as thorough descriptions of the methods concerned; rather 
they are intended to help CFD practitioners in the early stage of their aca-
demic careers, such as postgraduate students and other junior researchers, 
to understand the vast amount of literature in the field published mainly in 
academic journals and, more importantly, to apply the relevant numerical 
techniques in practical CFD simulations or to implement these methods 
in their CFD computer programs. More detailed and more in-depth infor-
mation on the numerical techniques are found in the references cited.

In this book, the individual chapters are intended as concise descriptions 
of the relevant areas related to the numerical aspects of direct and large-
eddy simulations, including numerical methods for both incompressible 
and compressible flows. The numerical methods for compressible flows 
discussed in the text are mainly restricted to relatively low-speed com-
pressible flows without significant formation of shock waves. Chapter 1  
presents an introduction to the Navier–Stokes equations and the meth-
odologies of DNS and LES. Chapter 2 discusses boundary conditions for 
DNS and LES. Chapter 3 presents the time integration methods. Chapter 4 
describes the numerical techniques used in DNS of incompressible flows. 
Chapter 5 describes the numerical techniques used in DNS of compressible 
flows. Chapter 6 describes the basic LES techniques for simulating incom-
pressible flows. Chapter 7 covers LES of compressible flows. Chapter 8  
is devoted to further topics and current challenges in DNS and LES. In 
Chapters 4–8, sample numerical simulation results are included. Finally, 
sample FORTRAN programs are included in the appendix to illustrate the 
implementation of finite difference numerical schemes.
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1C H A P T E R  

Introduction

As an interdisciplinary science, CFD is now applied in the fields 
of aerospace, automotive, biomedical, civil, chemical, environmental, 

mechanical, and even electrical engineering, as well as in physics, chem-
istry, and biology. As Anderson (1995) stated, modern CFD cuts across 
all disciplines where the flow of a fluid is playing a significant role. CFD is 
essentially a science of replacing the governing equations describing the 
fundamental physical principles with discretized algebraic forms, which in 
turn are solved to obtain numerical values for the flow field at discrete points 
in space and/or in time. This book is focused on the numerical methods to 
discretize the governing equations. However, it is necessary to introduce 
the governing equation before discussing the numerical methods.

All methods of CFD, whether the traditional RANS approach or other 
advanced approaches such as DNS or LES, are built upon the fundamental 
governing equations of fluid dynamics—the continuity equation based on 
mass conservation, the momentum equations based on Newton’s second 
law of motion, and the energy equation based on energy conservation. For 
combustion applications and many other applications involving chemi-
cal reactions, there are also governing equations for mass conservation of 
different species of chemicals. This chapter is intended as an introduction 
to the governing equations (Navier–Stokes equations) and the method-
ologies of DNS and LES. Due to the significant differences between the 
numerical methods for compressible and incompressible flows, discus-
sions of numerical features for compressible and incompressible flows are 
also included when the governing equations are presented.
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I.  GOVERNING EQUATIONS: COMPRESSIBLE 
AND INCOMPRESSIBLE FORMULATIONS

A. Fundamental Governing Equations for Fluid Flows

The governing equations for fluid flow are the mathematical statements of 
three fundamental physical principles upon which all motions of fluid are 
based:

Mass is conserved—the continuity equation.

Newton’s second law ( ) —the momentum equation.

Energy is conserved—the energy equation.

The governing equations concern the physics of fluid. Both theoretical and 
computational fluid dynamics are based on these equations, and therefore it 
is essential for a CFD practitioner to be familiar with them and to under-
stand their physical significance. Using an intuitive and physically oriented 
approach, Anderson (1995) provided an excellent description of the governing 
equations for CFD suitable for readers who are inexperienced in CFD.

In order to obtain the basic equations of fluid motion at the macroscale, 
such as meters or millimeters, the following procedure is always followed:

First, choose the appropriate fundamental physical principles from 
the law of physics, such as (1) mass conservation, (2) Newton’s second 
law, and (3) energy conservation.

Second, apply these physical principles to a suitable model of the flow. 
Unlike a solid body, which is easy to see and to define and has a defi-
nite shape, a fluid is a substance that is hard to grab hold of and does 
not have a shape unless a container is used. If a fluid is in motion, the 
velocity may be different at each location in the fluid. Therefore, flow 
models are needed to identify the moving fluid. For a continuum 
fluid, there are four possible models that can be used to visualize the 
moving fluid so as to apply to it the fundamental physical principles: 
(1) finite control volume fixed in space with the fluid moving through 
it, (2) finite control volume moving with the fluid such that the same 
fluid particles are always in the same control volume, (3) infinitesi-
mal fluid element fixed in space with the fluid moving through it, 
and (4) infinitesimal fluid element moving along a streamline with 
the velocity equal to the local flow velocity at each point.
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Third, apply a physical principle to a particular flow model and extract 
the mathematical equations that embody such physical principles.

Applying the fundamental physical principles to one of the four models 
will result in the basic governing equations for fluid dynamics: continuity, 
momentum, and energy equations. In the finite control volume approach, 
the fundamental physical principles are applied to the fluid inside the con-
trol volume. The flow equations directly obtained are in integral form. The 
integral form of the governing equations can be manipulated to indirectly 
obtain a set of partial differential equations. The approach of an infinitesi-
mal fluid element, in the meantime, leads directly to the fundamental equa-
tions in a partial differential equation form. Similarly, the partial differential 
equation form of the governing equations can be manipulated to obtain the 
respective integral equations. In the following, the partial differential form 
of the governing equations based on the approach of infinitesimal fluid ele-
ment is examined. The fluid element is “infinitesimal” in the same sense as 
in differential calculus; however, it is large enough to contain a huge num-
ber of molecules so that it can be viewed as a continuous medium.

Using the approach of an infinitesimal fluid element moving along a 
streamline and considering a fluid element moving through Cartesian 
space with the velocity , where , , and  are the unit vec-
tors along the , , and  axes respectively, the fundamental governing 
equations for an unsteady, three-dimensional, compressible, and viscous 
flow can be written as follows:

The continuity equation,

 
( ) 0

 
(1.1)

Momentum equations (the Navier–Stokes equations)
 component,

 

( ) ( )
 

(1.2)

 component,

 

( ) ( )
 

(1.3)
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 component,

 

( ) ( )
 

(1.4)

The energy equation,

2 2

2 2

�

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

  (1.5)

In the above governing equations, variables have their usual mean-
ings:  stands for the internal energy per unit mass;  the body forces 
acting on the volumetric mass of the f luid element (such as the gravi-
tational, electric, and magnetic forces);  the thermal conductivity;  
the pressure; �  the rate of volumetric heat addition (such as combus-
tion heat release, absorption, or emission of radiation) per unit mass; 

,  and  the velocity components in the , , and  directions with 
2 2 2 2 ;  time;  the temperature;  the density; and  the 

viscous stresses, and / / /  is the vector opera-
tor in Cartesian coordinates. Among the variables in the governing 
equations, the shear and normal stresses in a f luid are related to the 
temporal rate of change of the deformation of the f luid element. The 
shear stress is related to the temporal rate of change of the shearing 
deformation of the f luid element. By convention,  denotes a stress 
in the  direction exerted on a plane perpendicular to the  axis. The 
normal stress is related to the temporal rate of change of volume of 
the f luid element, which is usually smaller than the shear stress. In 
the late seventeenth century, Isaac Newton stated that shear stress in 
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a f luid is proportional to the time rate of strain (i.e., velocity gradi-
ents). Such f luids are called Newtonian f luids. In many f luid dynamic 
problems for engineering applications, the f luid can be assumed to be 
Newtonian. For such f luids, Stokes in 1845 obtained

 

, ,

, ( ) 2

2 2

,

( ) , ( )
 

(1.6)

where  is the molecular viscosity coefficient and  is the second viscos-
ity coefficient. Stokes made the hypothesis that 2 3/ .

Non-Newtonian fluids are encountered in many other applications 
such as biological flows. These are fluids that depart from the classic 
linear Newtonian relations between stresses and shear rates or veloc-
ity gradients, which may exhibit viscoelasticity and different constitu-
tive relations (relations between density, pressure, and temperature) in 
comparison with Newtonian fluids. A non-Newtonian fluid may not 
have a well-defined viscosity. In those cases, the viscous stresses need 
to be represented differently. The following discussions and the sub-
sequent examples of applications in this book are mainly restricted to 
Newtonian fluids.

The governing equations presented in Equations (1.1)–(1.5) have seven 
unknown flow-field variables: ,  , , , , , and , but there are only 
five equations. In practical applications, there are always additional 
equations that can be used to close the system. For instance, in aero-
dynamics, it is generally reasonable to assume the gas is a perfect gas 
(which assumes that intermolecular forces are negligible). For a perfect 
gas, the equation of state is , which provides a sixth equation, 
where  is the specific gas constant. A seventh equation to close the 
entire system is a thermodynamic relation between the state variables, 
for example, ( , ). For a calorically perfect gas (constant specific 
heats), this relation would be , where  is the specific heat at con-
stant volume.
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Using the definition of substantial derivative in Cartesian coordinates—
/ // / / —the governing equations given in 

Equations (1.1)–(1.5) can also be written as

 
0

 
(1.7)

  
(1.8)

  
(1.9)

  
(1.10)

2

2

�

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

  (1.11)

In CFD, Equations (1.7)–(1.11) are referred to as being of the noncon-
servation form, while Equations (1.1)–(1.5) are referred to as being of the 
conservation form or the divergence form. In general fluid dynamics, 
whether the equations are given in the conservation or nonconservation 
form is irrelevant. Indeed, through simple manipulations, one form can 
be obtained from the other. However, there are cases in CFD where one 
particular form is more important than the other (Anderson 1995). For 
instance, in flows containing shock waves, the computed flow field results 
are generally more smooth and stable when the conservation form of the 
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governing equations is used. Also, the conservation form may provide a 
numerical and computing convenience.

The equations presented above are applicable to an unsteady, three-di-
mensional, compressible, viscous flow. Depending on the physical condi-
tions, assumptions on the flow can be made for many cases, such as steady, 
one- or two-dimensional, incompressible, and inviscid flows. In CFD, gov-
erning equations under different assumptions are often employed to simplify 
the problem for different applications. For instance, inviscid flows are very 
important in aerodynamic applications. An inviscid flow is a flow where the 
dissipative, transport phenomena of viscosity, mass diffusion, and thermal 
conductivity are neglected. Taking the Navier–Stokes equations for a viscous 
flow and simply dropping all the terms involving friction and thermal con-
duction, the equations for an inviscid flow, the Euler equations, are obtained. 
The conservation form of the Euler equations can be written as follows.

Continuity equation:

 
( ) 0

 
(1.12)

Momentum equations (the Euler equations) 

 component:

 

( ) ( )
 

(1.13)

component:

 

( ) ( )
 

(1.14)

 component:

 

( ) ( )
 

(1.15)

Energy equation:

 

2 2

2 2

� ( ) ( ) ( )

 
(1.16)
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Euler equations are governing equations for high-speed compressible 
flows where viscous effects may be neglected. They are important to many 
aerodynamic applications. Historically, Euler derived the continuity and 
momentum equations in the eighteenth century. He had little to do with the 
energy equation because thermodynamics as a science developed in the nine-
teenth century. In much of the aerodynamics literature, only the momentum 
Equations (1.13)–(1.15) are labeled as the Euler equations. However, in some 
CFD literature, the whole system of equations—continuity, momentum, 
and energy—are (inaccurately) referred to as the Euler equations. Although 
Euler equations are important equations for high-speed aerodynamics, they 
are of little relevance to DNS and LES because these equations neglect the 
dissipative effects, which are the most important characteristic of the small 
scales of turbulence.

Another important simplification of the fundamental governing equa-
tions (Navier–Stokes equations) is for incompressible flows, which will be 
discussed later in this chapter. The incompressible flow governing equa-
tions have significance in CFD, including DNS and LES.

B. Comments on the Governing Equations

The governing equations presented in Equations (1.1)–(1.5) or (1.7)–
(1.11) are now broadly referred to as Navier–Stokes equations in honor 
of two men—the Frenchman M. Navier and the Englishman G. Stokes, 
who independently obtained the momentum equations in the first half 
of the nineteenth century. The terminology of Navier–Stokes equa-
tions was historically for the momentum equations only. However, in 
modern CFD literature, this terminology has been expanded to include 
the entire system of f low equations for the solution of a viscous f low—
continuity and energy as well as momentum. This situation is similar 
to the Euler equations for inviscid f lows. In addition, it needs to be 
noted that the equations presented above are for Cartesian coordinates. 
These equations can also be presented in cylindrical or spherical polar 
coordinates, or even in general curvilinear coordinates. Moreover, the 
equations discussed so far are for nonreacting single-phase f lows. The 
governing equations for multicomponent reacting f low systems such 
as those encountered in combustion applications (e.g., Kuo 2005) and 
those for multiphase f low systems (e.g., Crowe 2006) can also be given, 
but they are more complex in form due to the involvement of multi-
species and multiphases. It needs to be noted that in these complex 
f low systems, empirical approximations and/or correlations are also 
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included in the governing equations in addition to the fundamental 
physical principles.

For the governing equations of fluid dynamics, it is observed that they 
are a coupled system of nonlinear partial differential equations, and hence 
are very difficult to solve analytically. To date, there is no general closed-
form solution to these equations. (This does not mean that no general 
solution exists—it has just not been found so far.) In fact, this is one reason 
why CFD exists—numerical solutions of the governing equations have to 
be relied on rather than analytical solutions, which exist only for a number 
of very simplified cases such as two-dimensional boundary layer flows.

As Anderson (1995) discussed, the mathematical behavior of these 
partial differential equations has a significant impact on CFD. First, it 
is important that a CFD problem is well-posed, meaning that the solu-
tions to the equations exist and are unique and the solutions depend 
continuously upon the initial and boundary conditions. In DNS and 
LES, boundary conditions are of crucial importance to all applica-
tions, whereas initial conditions are of only secondary importance to 
some special cases. Chapter 2 provides a discussion of various bound-
ary conditions in detail. Second, it is important to classify whether the 
governing equations are hyperbolic, parabolic, or elliptic. Elliptic equa-
tions have to be solved simultaneously over the whole domain, whereas 
parabolic and hyperbolic equations are propagated from one location to 
another. The major mathematical behavior of hyperbolic and parabolic 
equations is that they lend themselves quite well to marching solutions. 
In contrast, for elliptic equations, the flow variables at a given point must 
be solved simultaneously with the flow variables at all other points. It 
can be shown that the unsteady Navier–Stokes equations have mixed 
behavior; they are in general elliptic in space and parabolic in time.

The fundamental governing equations apply to both laminar and tur-
bulent flows. In principle, numerically solving these governing equations 
to a satisfactory degree of accuracy will provide the answers needed; this 
is indeed the concept of DNS. However, this is practically very difficult 
due to the huge amount of resources required for most of the practical 
problems, which are very often beyond the reach of present-day available 
computing power. For turbulence flows, the existence of a broad range 
of time and length scales will usually lead to prohibitively high com-
puting costs if the equations were to be directly solved. The traditional 
CFD approach of turbulent flows has focused on the turbulent mean 
flow, in which the Reynolds- or ensemble-averaged governing equations 
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are solved. In the literature, this approach is referred to as the RANS 
modeling of turbulence. In the RANS approach, it was shown that the 
time or ensemble averaging of the fundamental governing equations 
leads to the appearance of unknown correlations. For an incompressible 
flow (which will be discussed shortly), the unknown correlations are the 
Reynolds (or turbulent) stresses,  (transport of  momentum in 

 direction, primed variables represent fluctuating components of the 
variables), and turbulent heat fluxes, . The averaged governing 
equations for turbulent flow, namely, the continuity, momentum, and 
energy equations, containing the unknown terms, therefore do not form 
a closed set. Determination of these unknown correlations is the subject 
of turbulence modeling. The complexity of turbulence makes it unlikely 
that any single model will be able to represent all turbulent flows. Thus 
RANS turbulence models should be regarded as engineering correlations 
or approximations rather than scientific laws. Experience with RANS-
based turbulence models has yielded both successes and failures. This is 
why more advanced CFD such as DNS and LES has garnered attention in 
the past few decades.

Finally, it needs to be mentioned that it is always the same set of govern-
ing equations such as those shown in Equations (1.1)–(1.5) and (1.6)–(1.10) 
that govern the flow of a fluid, but the flow fields are quite different for dif-
ferent cases. Why? The answer is through the boundary conditions, which 
are quite different for each case. Therefore, the real driver for any particu-
lar flow field solution is the boundary conditions. This is also why bound-
ary conditions are always very important in CFD, which will be discussed 
in Chapter 2 of this book.

C. Governing Equations for Incompressible Flows

The governing equations presented in Equations (1.1)–(1.5) and (1.6)–
(1.10) are for compressible flows where fluid density changes signifi-
cantly with the pressure. In CFD calculations of a compressible flow, 
the pressure, which is one of the unknowns, is directly calculated from 
an equation of state such as  for a perfect gas. However, the 
fluid in many applications, such as liquid flows and gas flows at rela-
tively low speed (usually with Mach number  0.3) where density is 
almost a constant, exhibits very little compressibility. For CFD analy-
sis of such flows, the incompressible form of the governing equations 
is always used. In a practical CFD computation, there are severe prob-
lems if a compressible flow code is used for a nearly incompressible flow. 
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As the Mach number becomes smaller, compressible flow solvers suffer 
severe deficiencies in both efficiency and accuracy. The CFD solvers for 
compressible flows are normally density based, in which density is one of 
the variables in the solution while pressure is directly calculated from the 
density and temperature. The CFD solvers for incompressible flows, on 
the other hand, are normally pressure based, in which pressure is solved 
from a governing equation such as Poisson’s equation for pressure.

The governing equations for incompressible flows can be conveniently 
obtained from those for compressible flows. The fundamental governing 
equations for an unsteady, three-dimensional, incompressible, and viscous 
flow can be given as follows:

Continuity equation,

 0  (1.17)

Momentum equations (the Navier–Stokes equations),

 component,

 
2

 
(1.18)

 component,

 
2

 
(1.19)

 component,

 
2

 
(1.20)

Energy equation,

�
 

(1.21)

In the above equations, the Laplacian operator in Cartesian coordi-
nates is defined as 2 2 2 2 2 2 2/ / / . In obtaining these equa-
tions, the dynamic viscosity  has been assumed to be a constant. For the 
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energy equation, it has been assumed that the kinetic energy per unit mass 
2 2 2 22 2/ ( )/  is much smaller than the internal energy and the 

work done by pressure is negligible. Thus, the energy equation is decoupled 
from the continuity and momentum equations.

In the energy equation, the rate of dissipation per unit mass is the work 
done by viscous stresses, given as

  
(1.22)

where  is the kinematic viscosity.
For incompressible flows, the fundamental governing equations lack an 

independent equation for the pressure. The continuity equation cannot be 
used directly. The Poisson’s equation for pressure, which can be derived 
from the continuity and momentum equations, is an important equation 
in CFD for incompressible flows. Taking the divergence of the momen-
tum equations and then simplifying using the continuity equation, the 
Poisson’s equation for pressure can be obtained as

 

2
( )

 
(1.23)

It can be shown that the Poisson’s equation for pressure is an elliptic 
problem; that is, pressure values on boundaries must be known to com-
pute the whole flow field. In CFD solvers for incompressible flows, solution 
of the Poisson’s equation for pressure is an integral part of the code.

In fluid dynamics, the Boussinesq (1903) approximation is a concept 
that has been used in the field of buoyancy-driven flows and low-speed 
reacting flows. When such an approximation is used, density differences 
are neglected, except where they appear as the body forces (density differ-
ences multiplied by the gravitational acceleration ). When the Boussinesq 
approximation is used, the governing equations that must be solved are 
essentially those for incompressible flows, but the buoyancy effects due to 
the interaction between density inhomogeneity and gravity are taken into 
account.

In CFD, the concept of low Mach number governing equations is use-
ful in many low-speed flow applications involving large density changes. 
The simplest low Mach number model is expressed by the incompressible 
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Navier–Stokes equations for a constant density fluid. Generalizations that 
incorporate variations in density include the Boussinesq approximation. 
Using asymptotic analysis, the set of governing equations for low Mach 
number flows can be derived from the original compressible Navier–
Stokes equations (e.g., Müller 1998). From an analysis of the compress-
ible Navier–Stokes equations, pressure in the flow field can be revealed as 
the zeroth-order global thermodynamic pressure, the first-order acoustic 
pressure, and the second-order “incompressible” pressure. The governing 
equations for low Mach number flows obtained using asymptotic analysis 
can be particularly useful for very weakly compressible flows encountered 
in combustion, aerodynamics, and aeroacoustics.

II.  TURBULENCE AND DIRECT NUMERICAL SIMULATION
Most flows of engineering importance and flows that occur in our envi-
ronment and in nature are turbulent. As one of the greatest challenges in 
science, turbulence has so far not been fully understood. Turbulent flows 
may be distinguished from laminar flows by their characteristics:

Turbulent flows are by nature three-dimensional and unsteady and 
involve three-dimensional fluctuations.

In turbulent flows, mixing of mass, momentum, or heat takes place 
far more effectively than by molecular diffusion in laminar flows.

Turbulence has been viewed, conventionally, as a stochastic phe-
nomenon. It is now established that most turbulent flow fields, such 
as boundary layers and free shear layers, exhibit a definite structure 
and some degree of order.

Turbulence may be viewed as a vortical flow with a wide spectrum 
of eddy sizes and fluctuating frequencies; that is, it involves a wide 
spectrum of length and time scales.

In turbulent flow, the large eddies are associated with low frequen-
cies and small eddies with high frequencies. The large eddies are 
unstable and can break down into small eddies, which in turn break 
down into smaller eddies, and so on. There is, therefore, a continu-
ous transfer of kinetic energy from the larger to the smaller eddies, 
a process that is referred to as the energy cascade. This continuous 
supply of energy, which is necessary to maintain the turbulence, is 
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extracted from the main flow by the largest eddies and is finally dis-
sipated into the smallest eddies.

Turbulence is a continuum process; that is, the time and length scales 
of the smallest eddies are many orders of magnitude greater than the 
time scales and free paths of molecular motion.

The dynamic and geometric characteristics of the large eddies are 
determined by the boundary conditions of the flow domain, and 
correspond closely with those of the mean flow.

The largest eddies are therefore anisotropic. They are responsible for 
most of the turbulent mixing and contain a large portion of the total 
kinetic energy of turbulence.

The smallest eddies, on the other hand, do not contribute signifi-
cantly to the process of turbulent mixing and contain only an insig-
nificant fraction of the total kinetic energy. The correspondence with 
the mean flow is absent. These eddies are therefore isotropic.

Irrelevant to the state of the flow (i.e., laminar or turbulent), the gov-
erning equations for fluid dynamics should apply because they are the 
mathematical statements of fundamental physical principles. The most 
exact approach to turbulence simulation is to solve the fundamental 
governing equations without any approximation or modeling. Direct 
numerical simulation is a CFD method that directly solves all the rel-
evant time and length scales in the flow field. Since DNS captures all of 
the relevant scales of turbulent motion, no model (meaning simplifica-
tion and approximation) is needed for the physical scales, including the 
small scales. For complex problems such as those encountered in most 
engineering applications, DNS is extremely expensive, if not intractable. 
The computational costs of DNS can be roughly estimated based on the 
analysis of the physical scales involved in a fluid flow, using the concept 
of Kolmogorov microscales.

In fluid dynamics, the understanding of turbulence scales was largely 
begun with the pioneering work of Kolmogorov (1941). Kolmogorov’s 
theory is based on theoretical hypotheses combined with dimensional 
arguments and experimental observations. His contributions to turbu-
lence have been reviewed numerous times (e.g., Hunt and Vassilicos 1991). 
Extensive descriptions on turbulence scales can be found in many texts 
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(e.g., Hinze 1975, Pope 2000, Tennekes and Lumley 1972). Kolmogorov 
microscales are the smallest scales in turbulent flows. They are defined by

Kolmogorov length scale 
3 1 4/

 (1.24)

Kolmogorov time scale 
1 2/

 (1.25)

Kolmogorov velocity scale ( ) /1 4  (1.26)

where  is the average rate of energy dissipation per unit massand  is the 
kinematic viscosity of the fluid. The Kolmogorov microscales are based 
on the idea that the smallest scales of turbulence are universal (similar for 
every turbulent flow) and that they depend only on  and . The definitions 
of the Kolmogorov microscales can be obtained by using this idea and 
dimensional analysis.

In a DNS, all the spatial scales, ranging from the smallest dissipa-
tive scales (Kolmogorov microscales) to the integral scale of the f low, 
which depends usually on the spatial scale of the boundary conditions, 
are associated with the motions containing most of the kinetic energy 
and need to be resolved directly in the computational mesh. Consider 
an integral scale  and number of discretized points  along a given 
mesh direction with uniform increments , where the resolution has to 
satisfy  so that the integral scale is contained within the compu-
tational domain. In the meantime,  needs to be satisfied so that 
the Kolmogorov scale can be resolved. Since 3/ , where  is the 
root mean square (rms) of the velocity, the previous relations imply 
that a three-dimensional DNS requires a number of mesh points 3 
satisfying

3 9 4 2 25Re Re/ . , where Re  is the turbulent Reynolds number

Therefore, the requirement for computing resources including CPU and 
memory storage requirement in a DNS grows very fast with the Reynolds 
number due to a significant increase in the required number of mesh 
points.
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Since turbulence by nature is unsteady and three-dimensional, all DNS 
has to be time-dependent simulation. An intrinsic restriction on the time 
step  is that /  should be small. Also, from a numerical point of 
view, the integration of the solution in time has to be done by an explicit 
method because of the very large memory necessary. This means that in 
order to be accurate, the integration must be done with the time step  
small enough such that a fluid particle moves only a fraction of the mesh 
spacing  in each step. Therefore, the time step has to be sufficiently small 
in order to be physically and numerically accurate and stable. Since the 
simulations need to be performed for a considerable period, such as the 
integral time scale, the costs on CPU are extremely high.

The combination of a large number of mesh points for spatial resolu-
tion and a small time step for time-marching leads to very high compu-
tational costs of DNS, even at low Reynolds numbers. For the Reynolds 
numbers encountered in most industrial applications, the computational 
resources required by DNS would exceed the capacity of the most power-
ful computers currently available. However, direct numerical simulation 
is a useful tool in fundamental research in turbulence. A well-defined 
DNS can be regarded as a detailed “numerical experiment,” from which 
useful databases can be established. Analyzing the databases, informa-
tion that is difficult or impossible to obtain in laboratory experiments 
can be extracted from the DNS results, allowing a better understanding 
of the physics of turbulence. Also, direct numerical simulations are use-
ful in the development of turbulence models for practical applications, 
such as the models in RANS approach and the subgrid scale (SGS) mod-
els for LES. This is done by means of a priori tests, in which the input data 
for the model is taken from a DNS simulation, or by a posteriori tests, 
in which the results produced by the model are compared with those 
obtained by DNS.

DNS is a method in which all the scales of motion of a turbulent flow are 
computed. In other words, DNS directly resolves all the time and length 
scales of a fluid motion without modeling approximation. DNS can over-
come the deficiencies of turbulence modeling. In the RANS approach, 
the complexity of turbulence makes it unlikely that any single turbulence 
model would be able to represent all turbulent flows. Turbulence models 
are essentially engineering correlations or approximations involving intrin-
sic inaccuracies. For RANS analysis of turbulent mean flow, a certain type 
of empirical data is required to determine the coefficients/constants in the 
turbulence models. Experience with RANS-based turbulence models has 
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yielded both successes and failures. Similar to a RANS approach, LES is not 
model-free. The SGS models also involve coefficients/constants that need to 
be determined by empirical means. DNS can overcome these problems; it is 
only restricted to simple flows because of its high computational costs. DNS 
is now the method of choice for investigating the physics of turbulence for a 
number of simple flows such as shear layers. State-of-the-art DNS is mainly 
restricted to low Reynolds number turbulent flows in simple geometries. 
Current DNS can be classified into two categories:

Temporal DNS: homogeneity in at least one direction

Spatial DNS: inhomogeneity in all three directions

In temporal DNS, the turbulence is assumed to be homogeneous in at 
least one direction. This is an idealized situation that rarely approximates 
real flows. However, the assumption of homogeneity leads to mathemati-
cal simplicity. In the homogeneous directions, spectral methods that are 
highly accurate can be conveniently employed. Temporal DNS can be used 
to analyze mixing-layer or boundary-layer flows (e.g., Guo et al. 1995). 
However, they cannot deal with practical boundaries such as inflow or 
outflow boundaries, which are frequently encountered in CFD for engi-
neering applications. Spatial DNS, on the other hand, is more suitable to 
practical engineering applications, but it has to deal with much higher 
computational costs. With the rapid increase in available computer pow-
ers, DNS has been predominantly performed as spatial DNS.

In practical DNS, there are several requirements that need to be satisfied 
so that all the relevant time and length scales can be adequately resolved:

Time-dependent, three-dimensional simulations with mesh size 
smaller than the smallest physical length scales and time step smaller 
than the smallest physical time scales: to yield all of the flow variables 
at a large number of spatial locations for many instants of time.

Highly accurate numerical schemes both in space and time with 
high-fidelity numerical boundary conditions.

The numerical method used in DNS has to be accurate enough. As in all 
CFD methods, numerical errors can lead to deterioration in the numerical 
solution. High-order numerical schemes are always required in DNS, even 
in LES. In a high-order scheme, the error in the functional approximation 
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decreases much faster with the grid spacing than that in a lower-order 
scheme since the error is proportional to  for a numerical scheme with 

th order formal accuracy, where  stands for the grid spacing. When 
accuracy is a crucial requirement of the simulation and a minimal trun-
cation error has to be achieved, the application of high-order schemes 
allows the use of a coarser mesh compared to lower-order schemes, which 
may need excessively fine meshes to achieve the same accuracy. Although 
high-order schemes may require more calculations at individual points, 
such as involving more neighboring data points, this computational pen-
alty can be effectively compensated for by the use of a coarser mesh. In a 
CFD simulation, the computing time depends mainly on the complexity 
of the method and the grid resolution. As a result of using a coarser mesh, 
one would expect a decrease in the computing time for a computationally 
efficient high-order scheme. In DNS and LES, the employment of high-
order numerical schemes may significantly reduce the computing costs to 
achieve the required accuracy compared with using lower-order numeri-
cal schemes, providing that the high-order numerical schemes are not 
overly complex in formation and can be efficiently implemented. Strictly 
speaking, DNS is exact only if numerical schemes are accurate enough. 
Boundary conditions in DNS also play a vital role since they not only need 
to be able to represent the physical conditions as realistically as possible 
but also need to be compatible with the high-order numerical schemes.

DNS offers many attractive and advantageous features, which were 
summarized by Kasagi (1998) as

DNS can be superior to experimental measurements in permitting 
full access to all the instantaneous flow variables, so that turbulent 
structures and transport mechanisms can be extensively analyzed.

Experimental measurement techniques can be tested and evaluated 
against detailed and accurate DNS results.

DNS can provide precise and detailed turbulence statistics, which is 
useful in evaluating and developing turbulence models.

Effects of important parameters characterizing flow and scalar fields, 
such as Reynolds number, Prandtl number, and Schmidt number, 
can be systematically varied and examined.

DNS can offer an opportunity to accurately study a virtual flow field 
that would not occur in reality.



Introduction  n 19

Historically, the meteorologist Richardson (1922) proposed numerical 
schemes to solve the equations of fluid mechanics applied to the atmo-
sphere in a deterministic fashion; this marked the beginning of CFD and 
DNS as the simplest CFD in its mathematical formulation of the governing 
equations—nothing more than the original Navier–Stokes equations (but 
most complex in numerical methods and boundary conditions). The ter-
minology of DNS, however, is widely accepted as being built upon the 
foundation work at the U.S. National Center for Atmospheric Research 
in 1972 by Orszag and Patterson (1972). Certainly DNS evolves with the 
development of numerical schemes and computer hardware. In recent 
years, a few very big DNS have been performed in Japan. DNS using 40963 
mesh points was carried out in the Japanese Earth Simulator supercom-
puter (Sato 2004) in 2002, which still represents one of the biggest DNS 
performed in the world nowadays.

The applications of DNS so far have mainly focused on shear layer flows. 
A shear layer is a relatively narrow region within the fluid flow where a 
rapid variation in velocity normal to the direction of the velocity takes 
place. Examples of shear layers consist mainly of a boundary layer on a flat 
plate, flow in pipes and channels, jets and plumes, and wakes. Although 
shear layer flows are simpler than many flows encountered in practical 
engineering applications, shear layer flows are “building blocks” for many 
more complex flows. They also provide ideal cases for model development. 
Some examples are shown for applications of DNS to these shear layer 
flows in subsequent chapters.

III. LARGE-EDDY SIMULATION
Large-eddy simulation was also based on Kolmogorov’s (1941) famous 
theory on turbulence. The theory makes the assumption that large eddies 
of the flow are dependent on the flow geometry, whereas smaller eddies are 
self-similar and have a universal character. It becomes a practice to solve 
only for the large eddies explicitly, and model the effect of the smaller and 
more universal eddies on the larger ones. In LES, the large-scale motions 
of the flow are calculated similar to those in DNS, whereas the effect of the 
smaller universal scales (the so-called subgrid scales) are modeled using a 
subgrid scale (SGS) model. In practical implementations, one is required 
to solve the filtered Navier–Stokes equations with additional SGS stress 
terms. One can think of the method as applying DNS to the large scales 
and modeling to the small scales as in the RANS approach.
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There are differences between the modeling in LES and RANS. In 
RANS, the modeling is based on the time- or ensemble-averaged govern-
ing equations; therefore, it would not be able to capture accurately the flow 
unsteadiness and the dynamics of small scales, in a sense that the aver-
age of a fluctuating quantity is taken as zero, such as 0 . In LES, the 
governing equations are spatially filtered rather than ensemble or time 
averaged. Explicit account is taken of flow structures larger than the filter 
width, whereas the influence of unresolved scales is modeled using an SGS 
model. The justification for LES is that the larger eddies contain most of 
the energy, do most of the transporting of conserved properties, and vary 
most from flow to flow; the smaller eddies are believed to be more univer-
sal and less important and should be easier to model. It is hoped that uni-
versality is more readily achieved at this level than in RANS modeling but 
this assertion remains to be proved. Unlike RANS, filtering is used rather 
than averaging; more important, the small-scale component of a quantity 
is no longer zero, such as 0 . CFD practice has shown that LES can 
significantly improve predictions of vortical and other complex unsteady 
flow structures in the flow fields, which RANS very often fails to do.

In LES, it is essential to define the quantities to be computed precisely as 
in the RANS case. To do this it is crucial to define a velocity field that con-
tains only the large-scale components of the total field. This is best done by 
filtering; the large or resolved scale field is essentially a local average of the 
complete field. For one-dimensional flow, the filtered velocity is defined by

 
( , ) ( )

 
(1.27)

where ( , ), the filter kernel, is a localized function or a function with 
compact support, that is, one that is large only when  and  are not far 
apart. Filter kernels, which have been applied in LES, mainly include 
Gaussian, box, and cutoff.

When the Navier–Stokes equations are filtered, one obtains a set of 
equations very similar in form to the RANS equations. For an incompress-
ible flow without body force, the filtered Navier–Stokes equations used in 
LES is given as

 

1 2

 
(1.28)

where the definitions of the velocities differ from those in RANS, but the 
closure issues are very similar. Since , a modeling approximation 
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for the difference between the two sides of this inequality  
must be introduced. In the context of LES,  is called the 
subgrid scale (SGS) Reynolds stress. It plays a role in LES similar to the 
role played by the Reynolds stress in RANS models but the physics that it 
models is different. By writing the complete velocity field as a combination 
of the filtered field and a subgrid scale field, we can decompose the subgrid 
scale Reynolds stress (SGSRS) into three sets of terms:

 ( ) ( )  (1.29)

which may be ascribed with physical significance. In particular, these 
three terms represent the following physics (Ferziger 1996):

The first term represents the interaction of two resolved scale eddies 
to produce small-scale turbulence. It has been called the Leonard 
term and, sometimes, the outscatter term.

The second term represents the interaction between the resolved scale 
eddies and the small-scale eddies. This term, also called the cross 
term, can transfer energy in either direction but, on average, transfers 
energy from the large scales to the small ones.

The third term represents the interaction between two small-scale 
eddies to produce a large-scale eddy and is called the true subgrid 
scale term. It is also called the backscatter term.

The SGS Reynolds stress in LES and the Reynolds stress in RANS are 
physically and numerically different. The SGS Reynolds stress in LES is 
due to a local average of the complete field, whereas the Reynolds stress 
in RANS is due to a time or ensemble average. The SGS energy is a much 
smaller part of the total flow than the RANS turbulent energy, so model 
accuracy may be less crucial in LES than in RANS computations. Subgrid 
scale modeling is the most distinctive feature of LES.

By far the most commonly used subgrid scale model is the one pro-
posed by Smagorinsky (1963), which marked the beginning of LES. It is an 
eddy viscosity model, given as

 

1
3

2
 

(1.30)
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where  is the resolved strain rate tensor,  is the Kronecker delta, and 
 is the eddy viscosity. Although the Smagorinsky model was initially 

developed for atmospheric or oceanic flows, it was not a success for the 
predictions of atmospheric or oceanic dynamics because it overly dissi-
pates the large scales (Lesieur et al. 2005).

Over the last two decades, there were many other SGS models of tur-
bulence proposed. For instance, a self-consistent dynamic approach to 
evaluate the coefficients that appear in the subgrid model was developed by 
Germano et al. (1991). The dynamic approach developed by Germano et al. 
(1991) for incompressible flows was successfully extended to compressible 
flows by Moin et al. (1991). Erlebacher et al. (1992) extended the LES subgrid 
models for compressible flows. Nevertheless, the majority of LES study has 
been performed for incompressible flows and there are a few texts on LES 
for incompressible flows (e.g., Sagaut 2006). LES of compressible flows is rel-
atively scarce. For a compressible flow, the SGS Reynolds stresses are more 
complex than those for an incompressible flow. The details are discussed 
in subsequent chapters. Furthermore, SGS models for complex flows such 
as those for multiphase flows and reacting flows encountered in combus-
tion applications still remain to be developed and validated. For combustion 
applications, chemical reaction and the associated heat release introduce 
fine-scale density and velocity fluctuations that, in turn, couple the small-
scale events back to the larger fluid-dynamic scales. Menon et al. (1993) 
applied the linear eddy mixing (LEM) model to LES of combustion. Within 
the context of LES, the LEM approach can be used to model the small-scale 
processes ranging from the grid resolution down to the Kolmogorov scale 
or the smallest scales related to chemical reaction in reduced dimension, 
whereas the large scales of the flow are calculated directly from LES equa-
tions of the motion with an appropriate coupling procedure. In the mean-
time, SGS models for complex multiphase flows are very immature. There is 
a lack of well-established SGS models, especially for the interactions between 
the different phases. There is no SGS model available to date that can take 
into account the subgrid influence of one phase that is locally smaller than 
the grid size (for instance, fine liquid droplets or solid particles dispersed in 
a gas medium) on the resolved scales.

There are similarities and differences between DNS and LES. Both DNS 
and LES have to be time-dependent three-dimensional simulations, due 
to the nature of turbulence. Both of them require high-order numerical 
schemes. In state-of-the-art DNS, the discretization schemes used are at 
least fourth order, typically sixth and above. In LES, the numerical schemes 
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used are normally between second and fourth order. LES has been suc-
cessfully applied to many industrial problems, but DNS has been mainly 
restricted to simple physical problems to understand the flow physics. LES 
can be applied to complex geometry problems, but the current DNS can 
deal with only simple geometries. DNS offers the most accurate flow pre-
dictions without modeling uncertainty. In terms of computational costs, 
however, DNS is much more expensive than LES.

Compared with traditional CFD based on the RANS approach, the main 
advantage of LES approaches is the increased level of detail it can deliver. 
While RANS methods provide “averaged” results, LES is able to predict 
instantaneous flow characteristics and resolve turbulent flow structures. 
This is important in many applications. For instance, in a combustion appli-
cation, the “averaged” concentration of chemical species and temperature 
from RANS may be too low to trigger a chemical reaction; “instantaneous 
data” from LES, however, can be used to predict cases of localized areas of 
high concentration and temperature in which reactions do occur. For near-
wall heat transfers, the instantaneous wall heat flux can be much higher or 
lower than the “averaged” value, which can be important to certain applica-
tions. The main advantage of RANS over LES is that RANS can be much 
cheaper than LES in terms of computational costs due to a possible coarser 
mesh and possible steady-state flow simulations in RANS (which is often the 
case). In addition, RANS can be used to study two-dimensional flows.

In general, LES has reduced modeling impact compared to RANS. 
LES offers significantly more accurate results than RANS for flows 
involving vortical structures and separation and for acoustic predic-
tions. Over the last two decades, the hybridization of LES and RANS 
has drawn much attention in CFD, mainly for wall-bounded flow prob-
lems. Most SGS models display an inability of correctly accounting for 
the anisotropy and disequilibrium in near-wall regions. For LES, the 
computational demands increase significantly in the vicinity of walls if 
the near-wall flow motions are going to be directly resolved, and simu-
lating such flows usually exceeds the limits of available computers. For 
this reason, zonal approaches are often adopted, with RANS or other 
empirically based models replacing LES in the wall region. Hybrid LES/
RNS approaches as such can be very useful in many practical applica-
tions before robust near-wall models are developed for LES.

As advanced CFD tools, in both DNS and LES, boundary condi-
tions are an integral and important part of the numerical solution of 
the governing equations. Boundary conditions for DNS and LES have 
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their special features compared with those for RANS-based CFD. In 
addition, both DNS and LES have to be time-dependent simulations, in 
contrast to RANS-based CFD, which are very often steady-state simula-
tions. In the following two chapters, numerical treatment of boundary 
conditions and discrete time integration methods for DNS and LES are 
discussed, and different applications of DNS and LES are discussed in 
subsequent chapters.
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2C H A P T E R  

Numerical Treatment 
of Boundary Conditions

The governing equations shown in Chapter 1 are a coupled sys-
tem of nonlinear partial differential equations, and their numerical 

solutions depend on boundary and initial conditions. As discussed in 
Chapter 1, the Navier–Stokes equations are in general elliptic in space 
and parabolic in time. To solve these equations for a specific flow configu-
ration under consideration, boundary conditions (BC) at all boundaries 
of the computational domain and initial conditions for all flow variables 
in the entire field are required. There are situations where initial con-
ditions are important, such as predictions of the transition process or 
fundamental investigations of turbulence. An example is the decay of a 
homogeneous isotropic turbulent flow (Hinze 1975) often used for basic 
investigations in turbulence research. However, in most applications of 
DNS and LES, the initial conditions play a subsidiary role because the 
statistically steady-state flow status is of major concern, which should be 
reached independently from the initial conditions. In many cases, appro-
priate initial conditions can be chosen to shorten the simulation time 
until a statistically steady state is achieved.

Boundary conditions play a significant role in all numerical simulations 
of fluid flow, heat transfer, and combustion problems. They are the real 
driver for a particular CFD problem—the flow fields are quite different for 
different cases although the governing equations are the same. The differ-
ences are all due to the different boundary conditions for different problems, 
as mentioned in Chapter 1. The specification of boundary conditions is an 
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important issue in all CFD calculations, which also needs special care in 
DNS or LES mainly for two reasons: (1) boundary conditions in DNS and 
LES have to represent the nature of the turbulent flow at the boundary, nota-
bly the unsteadiness; and (2) boundary conditions in DNS and LES need to 
be compatible with the high-order numerical schemes used for discretiza-
tion. There is usually a significant difference between BC for RANS-based 
CFD and those for DNS or LES, while in principle no fundamental difference 
exists between DNS and LES concerning the challenge of appropriate BC.

In all CFD calculations, whether the traditional RANS modeling 
approach or the more advanced DNS or LES, boundary conditions must 
represent the physical conditions at the boundaries as faithfully as pos-
sible. According to the mathematical characteristics of differential equa-
tions, boundary conditions may be categorized as follows:

Dirichlet BC: The value of the flow variable is specified. Dirichlet 
boundary conditions are typically associated with problems involv-
ing inflow phenomena and isothermal walls.

Neumann BC: The normal gradient of the flow variable is specified. 
Neumann boundary conditions are often associated with symmetry 
boundaries and adiabatic walls.

Mixed BC: A combination of Dirichlet and Neumann type BC is 
specified.

Boundary conditions can also be distinguished physically (Breuer 2007) 
as physical boundaries, such as a solid wall or artificial boundaries requir-
ing physically meaningful approximations of the flow such as an outflow 
boundary. Artificial boundaries appear if the computational domain con-
stitutes only a part of the total flow field, which is always necessary when 
the region of major interest is investigated instead of the entire flow field 
in order to reduce the computational costs. Artificial boundary conditions 
require physically meaningful approximations of the flow and are often 
difficult to formulate.

In the following sections, the most important types of boundary condi-
tions for DNS and LES are discussed, including inflow and outflow bound-
aries, wall boundaries, and other boundaries such as far field and open 
boundaries, and periodic and symmetry boundaries. Particular attention 
has been given to the Navier–Stokes characteristic boundary conditions 
(NSCBC) for compressible flows by Poinsot and Lele (1992), which have 
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been widely used in DNS and LES. Boundary conditions for incompress-
ible flows are also discussed.

I. INFLOW AND OUTFLOW BOUNDARY CONDITIONS
Inflow and outflow boundary conditions are very important BC widely 
used in CFD because they represent the starting and ending conditions of 
the flow in its streamwise direction. Outflow BC always represent an artifi-
cial cut through the flow field at a downstream location, which is also true 
for the inflow at an upstream location. The difference between an inflow 
and an outflow BC is that there is always certain known information of 
the inflow for a practical application such as those from an upstream noz-
zle. It is more difficult to have known information on an outflow bound-
ary where the flow is going out of the computational domain and may still 
be developing further downstream. In the following sections, a general 
discussion is given on inflow and outflow BC for DNS and LES, followed 
by discussions on inflow/outflow BC formulation based on the NSCBC for 
compressible flows. Finally, inflow/outflow BC for incompressible flows 
are discussed.

A. Inflow BC for DNS and LES

Inflow boundary conditions for DNS and LES are significantly different 
from those used in a RANS modeling approach. In a RANS approach, the 
inflow BC is normally of Dirichlet type with prescribed values that do not 
usually change with time. Inflow BC typically represent an artificial cut 
through the flow field. The inflow BC for DNS and LES has to be time 
dependent. DNS and LES computations require appropriate inflow data of 
Dirichlet type that adequately represents the flow field at an upstream loca-
tion where the inflow locates. Meanwhile, the inflow data needs to be time 
dependent, to reflect the unsteadiness of vortices and turbulence. In a DNS 
or LES computation, the generation of artificial inflow data can be based 
on the knowledge of the flow geometry and/or some experimental data. In 
many cases, the instantaneous velocity  at the inflow may be split into 
two parts (according to Reynolds’ approach): a steady, constant mean value 

 and a fluctuating component . Typically the mean value is known 
from experiments such as measured velocity profiles for nozzle flow, chan-
nel flow, and so on, or theory such as the simplified swirling velocity profile 
obtained from theoretical analysis (Jiang et al. 2008). Consequently, the 
generation of artificial inflow data can be restricted to the fluctuating com-
ponent. There are a variety of techniques that can be used.
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Random number or white noise: Random numbers can be easily gener-
ated by a computer program such as the random number generator in 
FORTRAN. This random number method is apparently the simplest 
technique, but unfortunately also the worst technique because it very 
often does not work. Computer-generated random data is normally of 
a very high frequency, changing rapidly and randomly between time 
steps. There is no way to take any spatial or temporal correlation into 
account. However, the velocity field of a real turbulent flow does have 
certain correlations. The high-frequency random data has nothing in 
common with the physical situation. Furthermore, the unsteadiness 
in the high-frequency random data can be easily damped out by the 
numerical methods used to solve the governing equations. Therefore, 
the results obtained from using these inflow conditions are more or 
less identical to those obtained using a constant laminar inflow. For an 
inflow BC using a random number generator, the only free parameter 
to adjust is the root mean square (rms) value of the fluctuations.

Stochastic fluctuations with a prescribed energy spectrum: Inflow 
BC of this type tries to provide a more realistic turbulent inflow by 
taking low wave numbers or low frequencies in a turbulent flow field 
into account. There have been a number of approaches for BC of this 
type. In general, the idea of all methods proposed is to produce inflow 
data that satisfies certain statistical properties such as rms values, 
cross-correlations, higher-order moments, length and time scales, 
or energy spectra. Klein et al. (2003) provided an overview of these 
techniques, which typically involve two steps: (1) generation of a pro-
visional three-dimensional signal for the velocity components, and 
(2) cross-correlations between different velocity components using the 
method proposed by Lund et al. (1998). In the first step, a provisional 
three-dimensional signal for each velocity component is generated 
that possesses a prescribed two-point statistic. This can be achieved 
by an inverse Fourier transform, as described by Lee et al. (1992). It 
can also be achieved by digital filtering of the random data (Klein 
et al. 2003), which allows a prescribed second-order (one-point) sta-
tistic as well as autocorrelation functions to be reproduced. Di Mare 
et al. (2006) also discussed the method of using a digital filter repro-
ducing specified statistical data. Compared with the inverse Fourier 
transform method, the digital filter method offers several advantages 
such as simplicity, flexibility, and accuracy. The method of using the 
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stochastic fluctuations with a prescribed energy spectrum provides a 
useful means of specifying inflow BC for DNS and LES of turbulent 
flows. However, individual inflows encountered in practical applica-
tions may not always follow a prescribed energy spectrum.

Synthetic eddy method and proper orthogonal decomposition for 
inflow data generation: These are efforts similar to the method of 
using the stochastic fluctuations with a prescribed energy spectrum. 
The idea behind the synthetic eddy method (Jarrin et al. 2006) is to 
focus directly on prescribing coherent structures in the inflow. It tries 
to reproduce prescribed first- and second-order one-point statistics, 
characteristic length and time scales, and the shape of coherent struc-
tures. The final velocity field is reconstructed from the mean veloc-
ity profile and the “vortex” velocity field. Druault et al. (2004) used 
a proper orthogonal decomposition (POD) and linear stochastic esti-
mation to construct inflow conditions, which provided a useful esti-
mation of the large-scale coherent structures at the inflow. However, 
this POD-based technique cannot be applied systematically for gen-
eral flows as it requires a previous realization of the flow.

Perturbed laminar inflow: Inflow BC based on a simple perturba-
tion added to a mean velocity profile has been commonly used in 
DNS and LES. There are situations where the flow is laminar at the 
inflow and the transition to turbulence takes place at downstream 
locations within the computational domain as a part of the solution. 
For these applications, a simple velocity perturbation may be used 
and the frequency of the perturbation can be obtained from a lin-
ear stability analysis of the parallel base flow or from experiments. 
For instance, there was experimental evidence on the most unstable 
frequency leading to the jet preferred mode of instability (Hussain 
and Zaman, 1981), which can be used to trigger the formation of 
vortical structures in DNS and LES of jet flows. In many cases, a 
small perturbation of the sinusoidal type involving one or a few 
frequencies (the fundamental frequency and its harmonics) may be 
added onto the mean velocity profile, which will subsequently lead 
to the development of flow instabilities and the formation of vortical 
structures in the flow field (e.g., Jiang et al. 2007a; 2007b). If the flow 
is of a high enough Reynolds number, the large vortical structures 
will break down into smaller ones with transition to turbulence tak-
ing place at downstream locations. The type of perturbations used, 
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especially the perturbing frequencies, will have a significant impact 
on the flow. For instance, vortex paring or merging (Mitchell et al. 
1999; Sandham 1994) can take place in the flow field at downstream 
locations. In other cases, helical disturbances will lead to jet flapping 
modes (e.g., Danaila and Boersma 2000; Uchiyama 2004). In general, 
the rms or the magnitude of the perturbations does not affect the 
flow too much if it is not too large. (In many simulations the pertur-
bation amplitude used is only around 1 .) When the perturbation 
is very large, the flow will be of a pulsating nature (Jiang et al. 2004; 
Jiang et al. 2006).

Inflow from an auxiliary simulation: Obtaining inflow data for 
DNS or LES from an auxiliary or precursor simulation is an accu-
rate technique to provide inflow boundary conditions. In this 
way, the inflow represents exactly the flow at the domain inlet. An 
example of this is the flow through a 90  bend (Breuer 2007). To 
generate appropriate inflow conditions for this case, an additional 
simulation for a straight duct with the same cross sections has to 
be carried out with periodic boundary conditions in the homoge-
neous flow direction. The instantaneous data from one plane of 
the auxiliary simulation can then be applied as the inflow bound-
ary conditions for the inhomogeneous flows. However, this tech-
nique has two major drawbacks. First, the method lacks generality 
and is restricted to simple cases where the flow at the inlet of the 
computational domain can be regarded as the solution of another 
flow. Second, the method entails a heavy extra computational load 
and may require large storage capacities. An auxiliary simulation 
will certainly cost computing resources, which can be a significant 
amount if the auxiliary simulation has to be performed for a large 
domain using lots of grid points for many time steps. In addition, if 
the auxiliary simulation and the main simulation are not running 
in parallel, an enormous amount of data will have to be stored.

Other inflow BC—periodic BC and inflow BC without perturba-
tions: The use of periodic BC will avoid inflow and outflow com-
pletely, and has been used in DNS and LES (e.g., temporal DNS). 
However, the applicability of periodic BC is restricted to flow con-
figurations that are indeed periodic owing to their geometry, such 
as flow around turbine blades, or channel, pipe, and duct flows with 
one or more statistically homogeneous flow directions. Spalart and 
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Leonard (1987) and Spalart (1988) extended the application of peri-
odic BC to turbulent boundary layers by using a coordinate trans-
formation. However, there is a lack of generality for the application 
of periodic BC. In DNS and LES, there are also situations where it 
is adequate to use an inflow BC based on the mean velocity profile 
only, without including any external perturbations or excitations. 
For instance, simulations of buoyancy-driven jet and plume flows 
exhibit natural instabilities without external perturbations (Jiang 
and Luo 2000a; Jiang and Luo 2003), where the flow develops into 
vortical structures and turbulence at downstream locations on its 
own. In these simulations, the initial perturbation required to trig-
ger the flow instabilities might have been provided by the numerical 
disturbance arising from the mismatch between the initial condi-
tion and the solution of Navier–Stokes equations. Once the insta-
bilities are triggered in the initial stage of the simulation, they are 
self-sustainable. Under these circumstances, perturbations, espe-
cially spatial perturbations, may still be needed to break the sym-
metry in the flow field if necessary, but temporal perturbations will 
be unnecessary to the development of vortical structures in the flow 
field.

An appropriate BC, depending on the type of application, would be 
required from the above list of inflow boundary conditions. Apart from 
the method based on random number perturbation or white noise, all 
the other approaches can be effective and physically meaningful. In the 
above discussion, focus has been given to velocities, which comprise a very 
important flow property defining the downstream flows. The specification 
of other flow variables such as density and temperature at the inflow follow 
the same principle. Above all, an inflow boundary should be able to repre-
sent the real flow at the domain inlet as faithfully as possible. Experimental 
data can certainly be used as the inflow condition when it is available. 
Physically, it is often preferable to have fixed values of all the variables (plus 
their fluctuations when applicable) for an inflow BC. However, a prescribed 
inflow BC does not normally satisfy the solution of the governing equa-
tions in the vicinity of the inflow. Mathematically speaking, such an inflow 
with all the variables fixed does not meet the requirements for well posed-
ness of the Navier–Stokes equations. When modern nondissipative algo-
rithms are used, numerical oscillations occur in the vicinity of the inflow 
boundary if all the variables are fixed. Poinsot and Lele (1992) proposed the 
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Navier–Stokes characteristic boundary condition (NSCBC) for DNS and 
LES, which is a general formulation method for boundary conditions and 
is based on the analysis of characteristics. The NSCBC associated with the 
high-order nondissipative numerical algorithms uses the correct num-
ber of boundary conditions required for well-posedness of Navier–Stokes 
equations that can avoid numerical instabilities and spurious wave reflec-
tions at the computational boundaries. In NSCBC, the local one-dimen-
sional inviscid (LODI) relations are used to provide compatible relations 
between the physical boundary conditions and the amplitudes of charac-
teristic waves crossing the boundary. NSCBC can be used to decide the 
“numerical” or “soft” boundary condition at the inflow in a DNS or LES 
calculation, while other physical conditions at the inflow are specified or 
fixed with their known values (mean value or mean value plus fluctuating 
value using one of the methods discussed above). NSCBC has been broadly 
used in DNS and LES, which will be discussed in detail subsequently.

B. Outflow BC for DNS and LES

An outflow boundary represents an artificial cut through the flow field, 
similar to an inflow boundary. An outflow BC is used when a finite domain 
has to be adopted in order to avoid a prohibitively large domain for the 
entire flow field or when the downstream flow is no longer of interest. The 
major difference between an inflow boundary and an outflow boundary 
is that there is no information available on the flow outside the computa-
tional domain for an outflow, whereas such information is always available 
from the upstream conditions for an inflow. The flow variables at an out-
flow have to be approximated in a physically meaningful manner in order 
not to influence the solution of the governing equations within the com-
putational domain. For an outflow BC, the upstream-traveling numerical 
reflection or perturbation triggered by the artificial outflow BC has to be 
eliminated or minimized. For the traditional steady-state RANS-based 
CFD, the condition of a fully developed flow in the main flow or stream-
wise direction is most often used for the outflow BC; that is, / 0 
with  representing any flow variables. This is essentially a zero-order 
polynomial extrapolation. There can also be first- or second-order poly-
nomial extrapolation. However, for DNS and LES, these boundary condi-
tions are highly reflective, in that the solution in the vicinity of the outflow 
BC will be distorted or polluted by the unknown flow field outside the 
computational domain. This is not surprising because the accuracies of 
these conditions are not physically assured. DNS or LES predictions are 
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inherently unsteady and dominated by dynamic vortical structures, and a 
simple zero-order extrapolation is not able to represent the flow unsteadi-
ness and dynamic vortical structures.

Appropriate outflow boundary conditions for DNS and LES have to 
ensure that vortices can approach and pass the outflow boundary without 
significant disturbance or reflection back into the computational domain. 
For this purpose, an outflow BC referred to as the convective boundary 
condition has been widely used and is given as

 
0

 
(2.1)

Equation (2.1) represents nothing other than a simplified and linearized 
one-dimensional transport equation in the main flow direction , where 

 denotes a mean convective velocity in the  direction and has to be 
adjusted with respect to the flow simulated. One criterion for the appropri-
ate choice of  may be the mass flow rate at the outlet. For incompressible 
flows, this mass flow rate has to balance the inflow mass flux or satisfy the 
global mass conservation. In this case,  is chosen to be a constant. For 
compressible flow,  may be decided by averaging the flow results over a 
region close to the outflow boundary and continuously updated in the simu-
lation. The spatial gradient in Equation (2.1) is approximated by one-sided 
differences. Breuer (2007) has shown that this convective outflow boundary 
condition can avoid the propagation of errors from the outflow boundary 
into the computational domain. The convective outflow boundary condi-
tion has been successfully used in both internal and external flows.

The difficulty of an outflow boundary condition is always associated 
with the upstream-traveling numerical reflection or perturbation triggered 
by the artificial outflow BC, which leads to propagation of errors from the 
outflow boundary into the computational domain. In order to minimize 
this reflection, a variety of so-called nonreflecting boundary conditions 
have been developed (e.g., Thompson 1987), especially for compressible 
flows. However, nonreflecting BC alone may not be sufficient in control-
ling the reflection from an outflow BC in a DNS or LES calculation because 
the flow is not necessarily going out of the domain instantaneously in the 
direction normal to the outflow boundary due to the existence of mul-
tidimensional vortical structures. To overcome this problem, a “sponge 
layer” may be used (e.g., Jiang et al. 2004). A sponge layer next to the out-
flow boundary can be used to control the spurious wave reflections from 
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the outside of the computational domain, by manipulating the flow in the 
sponge layer so that it approaches the outflow boundary at a normal angle 
and the flow is instantaneously going out of the domain at the outlet. This 
can be achieved by changing the solution in the sponge layer to approach 
the averaged values of the flow variables obtained from an upstream “aver-
aged zone” where the results are averaged over a region next to the sponge 
layer. The idea of using a sponge layer at the outlet of the domain is similar 
to that of the “sponge region” or “exit zone” (Mitchell et al. 1999), which 
has been proved to be very effective to control the wave reflections through 
the outflow boundary. The results in the sponge layer are not truly physi-
cal and therefore should not be used in the data analysis.

C. Inflow/Outflow BC Based on NSCBC for Compressible Flows

The Navier–Stokes characteristic boundary condition (NSCBC) proposed 
by Poinsot and Lele (1992) has been broadly used in the DNS and LES of 
compressible flows. The NSCBC can be used to decide the “numerical” or 
“soft” boundary condition at the inflow in DNS or LES, where the “soft” 
variable is being calculated during the simulation according to the char-
acteristic waves across the boundary rather than fixed, and other variables 
are specified or fixed with their known values. The nonreflecting charac-
teristic boundary condition (e.g., Thompson 1987), which has been used 
broadly as an outflow BC for compressible flows, can also be regarded as a 
special case of NSCBC due to the fact that both NSCBC and nonreflecting 
BC are both based on the analysis of characteristics of compressible flows. 
The notable difference between the NSCBC and the nonreflecting BC is 
that there is normally only one “soft” variable in the NSCBC whereas all 
the variables in the nonreflecting BC are “soft” and are changing in the 
simulation according to the characteristic waves across the boundary.

The NSCBC is based on an analysis of the characteristic waves of the 
Euler equations. Using the characteristic analysis, the Euler equations 
can be recast into a new form at the flow boundary by recalculating the 
hyperbolic terms using the characteristic wave amplitudes (Thompson 
1987; Poinsot and Lele 1992). Although the concept of “characteristic 
lines” may be questionable for the Navier–Stokes equations, it is logi-
cal to assume that waves for the Navier–Stokes equations are associated 
only with the hyperbolic part of the equations. In the NSCBC, flow vari-
ables at the boundary are simply obtained as the solution of the modi-
fied equations by replacing the hyperbolic terms using the characteristic 
wave amplitudes, which serve as the “numerical” or “soft” boundary 
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condition for the simulation. Considering only the  direction for sim-
plicity, the waves entering and leaving the computational domain for a 
subsonic flow are shown in Figure 2.1. The wave amplitudes (Thompson 
1987; Poinsot and Lele 1992) for this subsonic flow can be specified as

  direction:
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Similarly, the wave amplitudes for subsonic flows in the  direction and  
direction are given as
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FIGURE 2.1 Waves entering and leaving the computational domain in the 
direction for a subsonic flow.
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In Equations (2.2)–(2.4),  represents the sonic speed and other variables 
have their usual meanings.

The characteristic waves play a significant role in NSCBC and nonre-
flecting BC, and they can be classified as incoming waves entering the 
computational domain and outgoing waves leaving the computational 
domain as shown in Figure 2.1. From a numerical point of view, outgo-
ing waves leaving the computational domain do not cause any problem 
because their amplitudes can be readily calculated from the solution 
inside the computational domain. In the meantime, incoming waves 
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entering the computational domain can be problematic because they 
rely on the solution outside the computational domain, which is an 
unknown in the simulation.

In the nonreflecting characteristic boundary condition (e.g., Thompson 
1987), the amplitudes of all the incoming waves are simply set to zero. 
As a consequence, the unknown field outside the computational domain 
is excluded from the simulation. Computational practice has shown that 
nonreflecting BC is very effective in controlling the wave reflections from 
outside the computational domain. Therefore, nonreflecting BC have 
been successfully utilized in DNS and LES of many compressible flows. 
Applying the nonreflecting BC normally leads to a smooth flow field near 
the boundary. However, setting the amplitudes of all the incoming waves 
to zero is not physically very sound. When a nonreflecting BC is used, 
not all the flow variables at the boundary are fixed and they are chang-
ing with time according to the characteristic waves across the boundary, 
which may not be preferable in some cases such as for an inflow where the 
flow variables are physically fixed. For instance, applying the nonreflect-
ing inflow BC to a flow with buoyancy effect can be disastrous, as the 
drifting density at the inflow can lead to an unphysical buoyancy effect at 
the inflow.

The NSCBC can overcome the drawback of the nonreflecting BC by 
incorporating the physical conditions into the formulation of the char-
acteristic BC, using the concept of the local one-dimensional inviscid 
(LODI) relations (Poinsot and Lele 1992). The LODI relations provide 
compatible relations between the physical boundary conditions and the 
amplitudes of the characteristic waves crossing the boundary. Assuming 
the flow is locally one-dimensional in the direction normal to the bound-
ary, the , , , ,1 5… defined in Equations (2.2)–(2.4), of the incoming 
waves can be calculated from the amplitudes of the outgoing waves in the 
LODI relations; this provides a much better approximation of the charac-
teristic waves across the boundary than the nonreflecting BC. The LODI 
relations are easy to implement and can be viewed as compatibility rela-
tions between the choices made for the physical boundary conditions and 
the amplitudes of waves crossing the boundary. It is worth noting that the 
values obtained for the wave amplitude variations through the LODI rela-
tions are approximate since the complete Navier–Stokes equations involve 
viscous terms and terms for other directions. Nevertheless, the LODI rela-
tions are the most important features of the NSCBC. As an example, the 



40 n Numerical Techniques for Direct and Large-Eddy Simulations

LODI relations for density, pressure, and velocity components of a sub-
sonic flow are given as
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The applications of the LODI relations in the NSCBC are straightfor-
ward. Considering the inflow in the  direction shown in Figure 2.1, for 
instance, the incoming waves are 5, 2, 3, 4, while the only outgo-
ing wave is 1. Assuming that the “soft” variable is density, the pres-
sure varies according to , and the velocity components are fixed 
constants at the inflow, 5, 2, 3, and 4 can then be calculated using 
the LODI relations given in Equation (2.5) as 5  1, 2  1, 3  0, 
and 4  0. Using these wave amplitudes, the governing equations at the 
boundary can be recast into physically meaningful expressions, which 
will provide numerical boundaries for the simulation. Depending on the 
physical conditions at the boundary, there can be a variety of LODI rela-
tions, as discussed by Poinsot and Lele (1992). The LODI relations can be 
viewed as compatibility relations between the choices made for the physi-
cal boundary conditions and the amplitudes of waves crossing the bound-
ary. It needs to be mentioned that values obtained for the wave amplitude 
variations through LODI relations are approximate because the complete 
Navier–Stokes equations involve viscous and parallel terms.

The NSCBC method has proved to be very effective in the specifica-
tion of boundary conditions for DNS and LES of compressible flows. It is 
often used in association with the high-order nondissipative numerical 
algorithms (Lele 1992). The NSCBC uses the correct number of bound-
ary conditions required for well-posedness of Navier–Stokes equations 
that can avoid numerical instabilities and spurious wave reflections at 
the computational boundaries. This is very important to DNS and LES, 
where high-order nondissipative numerical schemes are often employed 
to ensure numerical accuracy. In DNS or LES using high-order numeri-
cal schemes, there can be severe consequences if the well-posedness of 
Navier–Stokes equations is not guaranteed. For instance, numerical oscil-
lations and spurious wave reflections will occur near the inflow boundary 
if all the variables are fixed. These may not cause problems in a numerical 
simulation using lower-order dissipative numerical schemes such as those 
in RANS because the dissipative error in the scheme may smooth the flow 
and avoid numerical instabilities, but at the expense of low accuracy. The 
NSCBC method allows a nonreflecting treatment for waves approaching 
the boundary at normal incidence. For multidimensional problems where 
the waves do not reach the boundary at normal incidence, the NSCBC 
treatment leads to small levels of reflection but still prevents oscillations 
and ensures well-posedness. To ensure better performance of the NSCBC, 
the flow boundaries may be placed in locations where the flow is more or 



42 n Numerical Techniques for Direct and Large-Eddy Simulations

less one dimensional, or a sponge layer can be used to make the flow be 
one dimensional such as that associated with the outflow boundary.

In summary, two types of inflow/outflow boundary conditions have to 
be provided to solve numerically the compressible flow governing equa-
tions: physical conditions and “soft” numerical conditions required by the 
numerical solution of the governing equations. In the NSCBC method, 
the physical and “soft” numerical conditions are interlinked through the 
LODI relations. The principles and assumptions of the NSCBC are sum-
marized as follows:

Physical conditions are specified according to well-posedness studies 
of the Navier–Stokes equations. Variables that are not imposed by 
physical boundary conditions are computed on the boundaries by 
solving modified governing equations using the characteristic wave 
crossing the boundary.

The waves for the Navier–Stokes equations are associated only with 
the hyperbolic part of the Navier–Stokes. (Although the Navier–
Stokes equations are not hyperbolic, they can be assumed to propa-
gate waves like the Euler equations.) All incoming wave amplitudes 
at a given boundary can be estimated from the original choice of the 
physical boundary conditions imposed on this boundary and can be 
expressed in terms of the outgoing wave amplitudes.

The NSCBC treatment for compressible flows discussed above is not 
restricted to inflow and outflow boundaries. As a general formation strat-
egy of boundary conditions, it can be used in the specification of wall 
boundaries and open boundaries as well. So far the discussion on bound-
ary conditions has been restricted to nonreacting flows. Characteristic 
boundary conditions can also be developed for reacting flows involving 
multiple species and chemical reactions (e.g., Baum et al. 1995; Sutherland 
and Kennedy 2003). Details of these boundary conditions can be found in 
the literature.

D. Inflow/Outflow BC for Incompressible Flows

The characteristic boundary conditions for compressible flows discussed 
above are not relevant to incompressible flows. In CFD solvers for com-
pressible flows, density is one of the variables in the solution while pres-
sure is directly calculated from the density and temperature. However, 
CFD solvers of incompressible flows are normally pressure based, in which 
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pressure is solved from a governing equation such as Poisson’s equation for 
pressure. The pressure is a somewhat peculiar quantity in incompressible 
flows. It is not a thermodynamic variable as there is no “equation of state” 
for an incompressible fluid. Its gradient is important in determining the 
velocity field. In an incompressible flow, the pressure propagates at infinite 
speed (or, in other words, the sonic speed is infinite) in order to keep the 
flow incompressible; that is, the pressure is always in equilibrium with a 
time-varying, divergence-free velocity field. It is also often difficult and/or 
expensive to compute. The general discussions on inflow and outflow BC 
for DNS and LES presented before are relevant to incompressible flows, 
apart from the NSCBC for compressible flows. For incompressible flows, 
the central issue of boundary conditions is associated with the boundary 
conditions for Poisson’s equation for pressure, or pressure Poisson equa-
tion (PPE).

For incompressible flows, the fundamental governing equations lack an 
independent equation for the pressure. The pressure is governed by the 
PPE, which can be derived from the continuity and momentum equations, 
as given in Equation (1.21). It can be shown that the PPE is an elliptic prob-
lem; that is, pressure values or its gradients on boundaries must be known 
in order to compute the whole flow field. In applying boundary conditions 
to the PPE, it is important to ensure that zero divergence of the veloc-
ity as shown in Equation (1.16) is enforced. There have been considerable 
discussions in the literature regarding the proper boundary condition for 
the pressure equation (e.g., Nordström et al. 2007; Sani et al. 2006). The 
boundary conditions by Nordström et al. (2007) have the same form on 
both inflow and outflow boundaries and lead to a divergence-free solu-
tion. Both Neumann and Dirichlet boundary conditions can be applied 
to the PPE. A Neumann condition can be derived simply by applying the 
normal component of the momentum equation at the boundary (Gresho 
and Sani 1987), while a Dirichlet boundary condition can be obtained by 
integrating the tangential component of the momentum equation along 
the boundary, which should give the same solution (Abdallah and Dreyer 
1998). The boundary conditions and solvers for the PPE are an important 
part of the numerical solution of an incompressible flow.

II. WALL BOUNDARY CONDITIONS
Wall boundary conditions play a dominant role in high-quality DNS and 
LES of wall-bounded flows. The derivation of appropriate wall boundary 
conditions is not a trivial task, and has implications in computational costs 



44 n Numerical Techniques for Direct and Large-Eddy Simulations

of the simulation and accuracy of the numerical results. Wall boundaries 
are encountered in almost all of the practical applications of fluid flow, 
heat transfer, and combustion applications. The presence of walls influ-
ences the flow dynamics in a significant manner. In the near-wall region, 
there is normally a sharp gradient for flow variables such as velocities, 
leading to larger shear and normal stresses compared to the flow regions 
far away from the wall boundary. Due to the large viscous stresses in the 
near-wall region, turbulence generation and transportation are also sig-
nificantly affected. The near-wall flow and its control are very important 
to a broad range of practical applications. For instance, control of the level 
of heat fluxes to walls is of crucial importance to the lifetime of the practi-
cal device such as the combustor of a gas-turbine system and the cylinder 
of a combustion engine. Although near-wall flow in very important, it 
has not been fully understood, especially for turbulent flows. The near-
wall flow involves a rapid change of the turbulent time and length scales. 
In the near-wall flow region, the generation and transportation of turbu-
lence are more significant compared with regions away from the wall. In 
CFD applications, wall boundary conditions have to be properly set up 
so that the flow in the near-wall region can be represented as faithfully 
as possible.

In practice, the wall boundary conditions for DNS and LES are not sig-
nificantly different from those for RANS. Although DNS and LES need to 
be able to represent the unsteadiness of turbulence, which is different from 
the traditional CFD based on RANS approach, the unsteadiness is mainly 
embedded in the time-dependent governing equations and the inflow 
boundary conditions. Under a time-dependent solver with an unsteady 
upstream condition, temporally and spatially resolved flow fields can be 
obtained for the flow in the near-wall region in DNS and LES. For instance, 
the maximum heat fluxes through the wall that control the maximum 
local thermal load imposed on materials can be obtained from DNS and 
LES. However, traditional RANS CFD cannot predict the instantaneous 
maximum heat flux, but only the mean values.

Wall boundary conditions are an integral part of the numerical simula-
tion, of which the accuracy is closely related to the grid resolution in the 
near-wall region as well as the resolutions in the flow regions away from 
the wall. There is a difference between the wall boundary treatment for 
DNS and LES. In a DNS simulation, the near-wall flow has to be resolved 
fully, which often requires a very fine mesh in the near-wall region. In an 
LES approach, this may not be necessary and a modeling strategy similar 
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to that used in RANS is often employed to avoid fully resolving the near-
wall flow. Pope (2000) classified LES of wall-bounded flows as (1) large-
eddy simulation with near-wall resolution (LES-NWR), where the filter 
and grid are sufficiently fine to resolve 80% of the energy everywhere; and 
(2) large-eddy simulation with near-wall modeling (LES-NWM), where 
the filter and grid are sufficiently fine to resolve 80% of the energy remote 
from the wall, but not in the near-wall region. In the meantime, the simu-
lation can be regarded as very-large-eddy simulation (VLES) if the filter 
and grid are too coarse to resolve 80% of the energy.

In the near-wall region, flow properties can change rapidly and the most 
notable one is velocity. Due to the friction at the wall, velocity can be zero 
on the wall surface. Associated with this nonslip condition, large veloc-
ity gradients usually exist in the direction normal to the wall boundary 
and are mainly responsible for the production of turbulent kinetic energy 
in the near-wall region. In DNS or LES, the numerical prediction has to 
give an accurate representation of these gradients, which is often difficult 
due to the excessive requirement on mesh density. For a turbulent flow, an 
extremely fine grid is required not only in the wall-normal direction, but 
also in all spatial directions in order to resolve the near-wall turbulence, 
including coherent structures such as the well-known high- and low-speed 
streaks (Breuer 2007; Piomelli and Balaras 2002). For model-free DNS, 
there is no option but to fully resolve the flows in the near-wall region. 
The wall boundary condition formulation in DNS can simply follow the 
methods described earlier in this chapter. For example, the wall boundary 
conditions for DNS of compressible flows can be specified by using the 
NSCBC method, taking into account the possible physical conditions in 
the wall boundary such as nonslip conditions and adiabatic or constant- 
temperature walls.

In LES, the near-wall flow can either be resolved as in DNS or modeled 
as in a traditional RANS modeling approach. In terms of computational 
costs, it is normally prohibitive to perform LES-NWR to resolve the near-
wall flows for many practical problems. Near-wall models therefore play an 
important role in LES of practical problems. However, developing suitable 
near-wall models for LES is a difficult task due to the complexity of near-
wall turbulent flows. LES-NWM is still a developing area. Intensive research 
activities are ongoing to widen the applicability of LES, partially leading to 
hybrid LES-RANS approaches. This will result in exciting new techniques 
and prospects for LES. Although there have been a significant amount of 
and continuous efforts in developing appropriate near-wall models for LES, 
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the current near-wall models used in LES are predominately taken from 
those approaches used in the traditional RANS approach.

For simulations of near-wall flows using RANS and LES with near-wall 
modeling, an important parameter is the wall unit, which is defined as

  
(2.8)

where the friction velocity (a characteristic velocity at a wall defined from 
the dimensional analysis) is defined as /  with  standing for 
the wall shear stress and  for the fluid density at the wall,  for the dis-
tance to the nearest wall, and  for the local kinematic velocity of the fluid. 
The dimensionless wall unit + (often referred to simply as  plus) repre-
sents the dimensionless wall distance and is commonly used in boundary 
layer theory for walls and in defining the law of the wall.

In DNS and LES, both the accuracy of the numerical scheme and the 
mesh size are of importance to the accuracy of the results. In general, a 
coarser mesh may be used if a higher-order numerical scheme is employed. 
For a given numerical scheme, the mesh size used in a practical simula-
tion is the major factor determining the accuracy of the results. Based on 
a private communication with Sagaut in 2004, Breuer (2007) discussed the 
typical mesh sizes for numerical simulations of near-wall turbulent flows 
using DNS, wall-resolved LES, and LES with an appropriate wall model. 
Table 2.1 shows these typical mesh sizes expressed in wall units. In DNS 
and LES of near-wall flows, the quality of the results can exhibit a depen-
dence on the size of mesh, especially in LES when the resolution in the 
near-wall region is not very high. Furthermore, the resolutions in all three 
directions are important. As discussed by Breuer (2007), the resolutions in 

TABLE 2.1 Typical Mesh Size in Wall Units for a Turbulent Boundary Layer Flow 
Using DNS, Wall-Resolved LES, and LES with an Appropriate Wall Model

Streamwise x 10–15 50–150 100–600
Spanwise z 5 10–40 100–300
Wall-normal ( y ) 1 1 30–150
Number of points in 0  y 3–5 3–5 —

 
  Breuer (2007) based on the private communication with Sagaut in 2004. With  
permission from Cambridge University Press.
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the streamwise direction  and in the spanwise direction  are also 
very important parameters that govern the quality of the LES solution:

Poor-resolution LES with large  and  (measured in wall 
units), that is, 100  and 30, leading to unphysical 
streaks and large error on the skin friction

Medium-resolution LES with moderate  and , that is, 
50 100  and 12 30, leading to thicker and shorter 
streaks and error on the skin friction

High-resolution LES with small  and , that is, 50  
and 12, leading to good agreement of the predicted skin 
friction in plane channel compared with DNS or experiments when 
nondissipative numerical methods are used

For practical flows with high Reynolds numbers, an extremely fine 
resolution is always required, which is very often not achievable. In order 
to overcome this problem, near-wall models or wall functions bridging 
the near-wall region, which enables the first grid point to be placed in 
the region of 30  +  50 within the logarithmic part of the velocity pro-
file (see the next section, “Classical Wall Models”), have been developed. 
Consequently, the near-wall flow behavior is not resolved in detail, which 
also leads to reduced requirements with respect to the grid characteristics 
in streamwise and spanwise directions. As a result, the resolution require-
ments are drastically reduced, allowing high Reynolds number flows to 
be tackled. Since the classical wall models were the basis of near-wall flow 
modeling, they are briefly reviewed as follows.

A. Classical Wall Models

The classical wall models were developed based on the analysis of bound-
ary layer flows. In the motion of a fluid above a wall surface, the influence 
of viscosity is mainly confined to a boundary layer close to the wall sur-
face. A diagram showing a typical wall boundary layer flow is shown in 
Figure 2.2. Within the wall boundary layer, the velocity changes rap-
idly from zero at the wall (no-slip condition) to the free stream velocity. 
Practically, the boundary layer thickness  may be defined as the dis-
tance from the solid surface where the local velocity  is, say, 99  of the 
free stream velocity . Experimental studies of a turbulent wall boundary 
layer suggest that it may be divided into two regions (or layers): the inner 
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(wall) layer approximately at 0 0 2.  and an outer layer at 0 2. .
The velocity distribution in the wall layer can be analyzed by using dimen-
sional analysis, which led to the law of the wall. One of the first wall mod-
els developed and applied to flows in plane channels and annuli was by 
Schumann (1975). It is based on the phase coincidence of the instanta-
neous wall shear stress ,  and the tangential velocity component  at 
the first grid point nearest the wall. The coincidence assumed between the 
wall shear stress ,  and the velocity component  has been experimen-
tally verified. In the classical wall models, a dimensionless velocity + can 
be defined as

  
(2.9)

The law of the wall states that + is a function of + only. At the first grid 
point nearest to the wall, it can be shown that +  +. As determined 
by the wall distance, a corresponding law for the viscous sublayer (VS: 
region I of the inner layer in Figure 2.2), the logarithmic buffer layer (BL: 
region II of the inner layer in Figure 2.2), and the logarithmic outer layer 
(OL: region III of the inner layer in Figure 2.2) is assumed:

+  +   for the VS 0 5  (2.10)

 2 2ln( )   for the BL 5 30  (2.11)

 3 3ln( )   for the OL 30 500  (2.12)

Wall Boundary Layer
Outer Layer

Inner Layer
I

II
III

FIGURE 2.2 Schematic of a wall boundary layer flow.
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where 2, 3, 2, and 3 are empirical constants, which may be given as 2  
5.0, 3  2.5, 2  3.05, and 3  5.0–5.2. Relations such as Equations (2.10)–
(2.12) can be conveniently implemented into a CFD code, avoiding a numer-
ical solution of the flow in the wall boundary layer, which normally incurs 
very heavy computational load due to the existence of large gradients in the 
near-wall flow region. The classical law of the wall holds for smooth surfaces 
under zero and moderate pressure gradients. The presence of an adverse pres-
sure gradient is normally responsible for deviations from this law.

There are several enhanced versions of the classical law of the wall. Based 
on Schumann’s approach (1975), Piomelli et al. (1989) took into account 
the inclination of the near-wall structures and the resulting temporal 
delay between the tangential velocity and the wall shear stress. Another 
wall model suggested by Piomelli et al. (1989) was the ejection boundary 
condition, which was based on the observation that the near-wall dynam-
ics were dominated by sweeps and ejections. Both models led to slightly 
improved results for the plane channel flow compared with Schumann’s 
original formulation.

The classical law of the wall models, including the enhanced versions, 
have been successfully used in many simple wall boundary layer flows. 
A major drawback of all these models is that they are difficult to assign 
to complex, statistically three-dimensional flows because they require the 
determination of the averaged wall shear stress and velocity. In addition, 
the use of the customarily applied laws of the wall is highly questionable 
for flows in complex geometries involving large pressure gradients or local 
separation and recirculation regions. In complex geometries such as a flow 
configuration involving “corners,” the boundary layer assumption is no 
longer valid.

The analysis of the wall boundary layer flows leading to the law of the 
wall was based on the averaged flows, that is, time- or ensemble-averaged 
flow quantities. An analytical expression for the local wall shear stress was 
derived by Hoffmann and Benocci (1995), where the boundary layer equa-
tions were analytically integrated, coupled with an algebraic eddy-viscosity 
model. Neglecting the convection terms and approximating the unsteady 
term, an expression for the wall shear stress was obtained, leading to sat-
isfactory results for plane channel flows and rotating channel flows. An 
improved model was also derived by Manhart (2001), who took the local 
instantaneous pressure gradient in the streamwise direction into account.

There were also wall models based directly on the near-wall velocity 
fields. Extended from Schumann’s and Piomelli’s models, Bagwell et al. 
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(1993) used the entire velocity field in a plane parallel to the wall in order 
to determine the wall shear stress, on the basis of a linear stochastic esti-
mation approach. Following Schumann’s concept, Werner and Wengle 
(1993) suggested a wall model that is also based on the phase coinci-
dence but that applies the laws of the wall directly to the instantaneous 
velocity field. This simplifies the determination of the wall shear stress 
and allows the use of their model in flows with separations. However, 
the application of the laws of the wall to instantaneous velocities and 
in separated flows is theoretically not justified. The application of these 
models becomes questionable.

The limitations of the classical law of the wall models for the near-wall 
flow are associated with the assumptions made in developing these mod-
els, most notably the boundary layer flow assumption. There have been 
many successful applications of these wall models to RANS-based CFD. 
However, strictly speaking, these wall models are only applicable to sim-
ple flow configurations, and usually they are only applicable to the mean 
flow quantities. Attention is needed when these laws are used together 
with LES, which in principle should be time dependent and fully three- 
dimensional. A mismatch would occur if these wall models were used 
directly in LES. To overcome this problem, a more suitable approach is 
the zonal or nonzonal approach, which try to combine RANS-based near-
wall modeling together with LES for the flow region away from the wall 
boundaries, as discussed in the section that follows.

B. Zonal and Nonzonal Approaches for LES

Since there is a lack of well-established near-wall models for LES, a natural 
option is to use those models developed for RANS. A wall-bounded flow 
can be divided into two regions: a near-wall region where the effect of wall 
boundary on the fluid dynamics is significant, which is also referred to as 
the inner layer; and a region away from the wall where the presence of the 
wall boundary does not have a significant effect on the flow, which is also 
referred to as the outer layer. A possibility for LES of fluid flows with wall 
modeling is to use so-called zonal or nonzonal approaches based on the 
explicit solution of a different set of equations in the inner and outer lay-
ers (Balaras and Benocci 1994; Balaras et al. 1996; Cabot and Moin 1999; 
Piomelli and Balaras 2002). This modeling approach takes advantage of 
using RANS for the near-wall region; therefore, it may avoid the difficul-
ties of LES for the near-wall region. The basic assumption is that the inter-
action between the near-wall region and the outer region is weak.
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In a zonal or nonzonal approach, simplified governing equations such as 
the two- and three-dimensional thin boundary layer equations or the RANS 
equations with a statistical turbulence model can be used for modeling the 
inner near-wall region. These equations can be solved on an embedded inner 
grid in the direct vicinity of the wall, whereas the original LES prediction can 
be carried out on an outer grid not including the near-wall region. One exam-
ple of this approach is a two-layer model proposed by Balaras and Benocci 
(1994) and extensively tested by Balaras et al. (1996). In this two-layer model, 
the boundary layer equations for the inner layer can be given as

 
( ) ( )

 
(2.13)

where  denotes the wall-normal direction  and   1,2 or   1,3 depend-
ing on whether the wall plane is in the  plane or  plane. The wall-
normal velocity component  is computed based on the mass conservation 
for the inner layer, which has several grid points, each with its own value 
of . The system is closed by setting the wall boundary condition such 
as the no-slip condition for the wall-side boundary of the inner layer, 
and by setting the velocity obtained from the outer-flow LES prediction 
as a “freestream” condition at the outer-side boundary of the inner layer 
(Piomelli and Balaras 2002). Furthermore, the pressure gradient /  
in Equation (2.13) is assumed to be independent of  in the inner layer 
and thus taken from the outer-flow prediction. Consequently, no Poisson 
equation for the pressure of an incompressible flow has to be solved and 
the costs for solving the two momentum equations in the inner layer are 
only marginally higher than using equilibrium boundary conditions such 
as in the wall models of Schumann (1975) and Piomelli et al. (1989). In this 
approach, the quality of the simulation depends strongly on the choice 
of the model for the eddy viscosity . The most commonly used model 
for , originally applied by Balaras and Benocci (1994) and Balaras et al. 
(1996), is a simple mixing-length model with near-wall damping. It can be 
given as

 ( ) ( )| |2
 (2.14)

where  denotes the von Kármán constant, | |  is the magnitude of the 
resolved strain rate, ( ) exp[ ( / ) ]1 3  is a damping function that 
ensures the correct behavior of  at the wall with + representing the 
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distance from the wall in wall units and +  25 as a constant. Finally, the 
wall stress components obtained from integrating Equation (2.13) in the 
inner layer are used as boundary conditions for the outer LES prediction.

This two-layer model was successfully applied to channel flows with and 
without extra rotation and backward-facing step flows. In the backward-
facing case, however, the boundary layer equations used within that model 
are no longer valid in the vicinity of the separation region. Nevertheless, 
the full time- or ensemble-averaged Navier–Stokes equations can always be 
used in the inner layer when the boundary layer assumption is not valid. If 
the full RANS equations are applied instead, a hybrid LES–RANS approach 
is achieved. Since the regions for RANS and LES are defined in advance in 
the numerical simulation, this method is referred to as a zonal approach.

In companion to the zonal approach, the counterpart to the zonal tech-
nique discussed above is the nonzonal hybrid LES–RANS approach. In 
a nonzonal approach, a gradual transition between both LES and RANS 
takes place based on an automated switch, ideally removing the need for 
user-defined information. Speziale’s (1998) formulation belongs to this 
hybrid concept. Following the idea of Speziale (1998), Zhang et al. (2000) 
numerically demonstrated this hybrid concept for a flat-plate boundary 
layer with and without separation, which was perhaps the first successful 
application of the concept in practical simulations. Conceptually, their so-
called flow simulation methodology is very similar to the detached-eddy 
simulation (DES) proposed by Spalart et al. (1997) and Spalart (2000), 
which is more widely known in the field. The DES approach may be con-
sidered a zonal method because the LES and RANS domains are fully 
determined by the grid topology and the segmentation is independent of 
the flow solution.

The DES has been a great success in practical simulations of wall-
bounded flows. In DES, the attached flow regions near the walls are dis-
tinguished from the separated flow regions with detached eddies. The 
near-wall flow is properly predicted based on RANS with statistical tur-
bulence models, whereas the detached flow region, including the large-
scale unsteady vortical structures, are computed more reasonably by LES. 
The basic concept is to combine the advantages of both methods, yielding 
an optimal solution at least for a special class of flows, and to afford pre-
dictions of high Reynolds number flows with reasonable computational 
efforts. The DES method could be regarded as a natural hybrid method 
combining RANS and LES. It means that, near solid boundaries, the gov-
erning equations work in the RANS mode where all turbulent stresses are 
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modeled using the traditional RANS turbulence models, while far away 
from solid boundaries, the method switches to the LES mode. Note that 
pressure and velocity fields are time- or ensemble-averaged in the near-
wall region. Therefore, the unsteady vortical structures in the near-wall 
region are not resolved directly and DES is not able to give detailed infor-
mation on the near-wall dynamic structures.

Although DES seems to be a useful technique for predictions of high 
Reynolds number flows, a variety of open issues need to be addressed 
before one can rely on such a hybrid method. These include, in particular, 
the demand for appropriate coupling techniques between LES and RANS, 
adaptive control mechanisms, and proper SGS-RANS turbulence models 
(Breuer 2007). In a hybrid approach, the quality of the numerical results 
depends on both the LES and RANS and their coupling. The final numeri-
cal results rely partially on the wall boundary conditions implemented in 
the approximate RANS modeling in the near-wall region. The classical 
wall functions discussed above are examples of RANS modeling in the 
near-wall region, which can be used in the hybrid approaches. Piomelli 
and Balaras (2002) gave a more complete review of wall-layer models for 
LES, which can be referred to for more information.

The near-wall models discussed so far have been restricted to veloci-
ties. Appropriate boundary conditions for the pressure field (if required at 
all) are not so critical. They depend on the flow problem considered and 
on the numerical methodology applied. For example, the boundary layer 
over a flat plate at rest exhibits a zero wall-normal pressure gradient at the 
wall, which can be discretized by a Neumann boundary condition. For a 
more general case of a flow over a curved, moving, or rotating surface or 
when external forces such as buoyancy or centrifugal forces are present, 
large pressure gradients may appear in the vicinity of the surface. In that 
case it is advisable to determine the pressure gradient based on a simpli-
fied momentum equation in the wall-normal direction using one-sided 
finite differences or to extrapolate the pressure at the wall from the inter-
nal region to the boundary. Because these techniques used in the context 
of LES do not deviate from those used in the traditional RANS approach, 
one may refer to the basic literature for CFD.

C. Near-Wall Models for Nonisothermal Flows

The wall boundary conditions and near-wall models discussed so far are 
mostly sufficient for isothermal flows. For such flows, there is normally no 
need to solve for an energy equation and therefore there is no need to deal 
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with boundary conditions for temperature, or internal energy or enthalpy. 
In many heat transfer and reacting flow applications, an energy equation 
for temperature, or internal energy or enthalpy, has to be solved and one 
has to deal with the boundary condition of the energy equation. In this 
case, a situation similar to that of the velocity field arises. In principle, a 
wall heat flux or wall temperature can be prescribed and discretized with-
out further approximations. Indeed, this has to be the case for DNS and 
LES–NWR (large-eddy simulation with near-wall resolution). Like the 
viscous wall layer for the velocity field, this measure requires the conduc-
tive wall layer to be resolved. As determined by the molecular Prandtl 
number of the fluid, which describes the ratio of diffusivities for momen-
tum and heat, this layer can be even thinner than the viscous layer for 
many fluid materials such as liquids with Prandtl number greater than 
one. This implies that even finer mesh will be needed to resolve the near-
wall layer of temperature than that of the velocity.

In some LES applications of nonisothermal flows, a very fine near-wall 
resolution is not possible or not desired. In such LES–NWM (large-eddy 
simulation with near-wall modeling), near-wall models for heat transfer 
are needed. These models are basically analogous to the wall models for 
the velocity field such as the models of Schumann (1975) and Piomelli 
et al. (1989) described in previous sections. Grötzbach (1981; 1987) and 
Grötzbach and Wörner (1999) proposed a time-dependent formulation of 
wall models for the temperature equation. These models relate the instan-
taneous local heat fluxes to the temperature fluctuations at the grid point 
nearest to the wall by using time-averaged wall laws. In the context of 
flame/wall interaction, Poinsot and Veynante (2001) discussed the law of 
the walls for nonisothermal flows. Jiang et al. 2007b) attempted to develop 
a law of the walls for nonisothermal flows using DNS results of an imping-
ing jet flame. Nevertheless, the law of the walls for nonisothermal flows 
are much less developed than those for isothermal flows. There is a need 
to further develop such models. Clearly, the near-wall models for chemi-
cally reacting flows such as combustion problems are more complex than 
those for nonreacting isothermal flows. In a reacting flow, the transient 
effects are more significant in the near-wall region because the flame may 
extinguish in the vicinity of the walls. In addition, wall boundary condi-
tions are needed for the concentrations of chemical species. The additional 
scalar transport equations for chemical species can be treated in much the 
same way as the energy equation for temperature. However, the diffusivi-
ties for different chemical species can be significantly different, and also 
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different from those for the momentum and heat. Consequently, both the 
near-wall resolution and the near-wall modeling of chemically reacting 
flows are very challenging, and normally require much finer mesh and/or 
greater modeling care than those for nonreacting flows.

III. OTHER BOUNDARY CONDITIONS
Inflow and outflow boundary conditions and wall boundary conditions 
play a dominant role in DNS and LES predictions of high quality. Intensive 
research activities have been carried out to develop inflow/outflow and 
wall boundary conditions. However, other types of boundary conditions 
are also often encountered in a practical DNS or LES calculation, or gener-
ally speaking, in any CFD problem. One example is the artificial bound-
aries arising owing to finite computational domains for open boundary 
flow problems. Other examples include periodic and symmetry boundary 
conditions. The derivation of these boundary conditions is not a trivial 
task, because it also needs to represent or approximate the physical condi-
tions at the boundary locations as faithfully as possible. In the following 
sections, appropriate far-field boundary conditions associated with the 
artificial boundaries arising owing to finite integration domains for the 
prediction of external compressible flows is presented first. This issue is 
directly related to the boundary conditions applied to acoustic simula-
tions, where DNS and LES are often very useful. Periodic and symme-
try boundary conditions are then discussed in the context of high-order 
numerical schemes for DNS and LES. Finally, other relevant issues in the 
specification of boundary conditions are briefly discussed.

A. Far-Field and Open Boundary Conditions for Compressible Flows

DNS and LES are particularly useful in computational acoustics for com-
pressible flows, due to the fact that they are time-accurate (in comparison 
with the traditional RANS modeling approach) so that they can predict 
the time-dependent pressure fluctuations constituting the acoustic field. 
Far-field boundary conditions for compressible flows are an essential part 
of the boundary conditions for numerical predictions of the acoustic field, 
which normally require a relatively large computational domain. These 
far-field boundary conditions are artificial boundaries, locating in regions 
where the flow does not experience significant changes. However, they 
are still very important to the overall quality of the numerical solution. 
Inappropriate far-field boundary conditions can severely pollute the solu-
tions inside the computational domain, leading to unphysical numerical 
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results or even diverged results. In nonacoustic applications where large 
computational domains are not necessary, such as simulations of the near-
field of free jet flows, the open boundary conditions in the cross-streamwise 
directions are also very important because they must allow the entrain-
ment of the ambient fluids (Jiang and Luo 2003). In other words, they must 
allow the ambient fluids to come into and to go out of the computational 
domain in a time-dependent simulation. These open boundary conditions 
also belong to the category of artificial boundaries.

Artificial boundaries such as the open boundaries appear when the com-
putational domain forms only part of the entire flow field in order to reduce 
the computational costs. They require physically meaningful approxima-
tions of the flow and are often difficult to formulate. For the derivation of 
far-field boundary conditions for compressible flows, all viscous effects are 
normally neglected, leading to the Euler equations. Although this assump-
tion is in general questionable for vortical flows, it is a reasonable condition 
under practical aspects such as a large extension of the domain and a highly 
stretched grid with a coarse resolution in the vicinity of the far-field bound-
aries. The three-dimensional Euler equations for a compressible flow are a 
hyperbolic system of five equations with five real eigenvalues (Thompson 
1987). These eigenvalues define the directions along which information is 
transported. Owing to different signs of the eigenvalues, subsonic flows 
(Mach number   1) and supersonic flows (   1) have to be distinguished. 
If a positive mean flow direction for a supersonic flow is assumed, all eigen-
values are positive. This is the most uncritical case because the transport of 
information takes place only in a positive coordinate direction. For a flow 
boundary with the fluids coming into the domain, the values of all variables 
at the boundary can be prescribed by the undisturbed ambient conditions. 
For a flow boundary with the fluids going out of the domain, the values of 
all variables at the boundary can be prescribed by the numerical solutions of 
the internal domain, using extrapolation of the solutions for the grid points 
near the boundary.

For a subsonic flow (   1), four eigenvalues are positive and only one 
eigenvalue is negative, as shown in Figure 2.1. In contrast to the supersonic 
case, this means that four variables have to be prescribed by the undis-
turbed flow at the inlet and one variable has to be extrapolated from the 
inner region to the boundary. Correspondingly, at the outlet, four variables 
at the boundary are given by the internal field, whereas one variable is 
defined from outside. The latter may lead to reflections. In this context, the 
nonreflecting boundary conditions and the Navier–Stokes characteristic 
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boundary conditions (NSCBC) discussed before can be used to avoid the 
wave reflections.

For simulations of the near-field of free jet flows, the open boundary 
conditions in the cross-streamwise directions can also be formulated 
based upon NSCBC, which allows the entrainment of the ambient fluids. 
At the boundary, flow variables other than the velocity component normal 
to the boundary can be prescribed by the physical conditions. The local 
one-dimensional inviscid (LODI) relations can then be used to provide 
compatible relations between the physical boundary conditions and the 
amplitudes of characteristic waves crossing the boundary. Similar to the 
Euler equations, the Navier–Stokes equations can be transformed into a 
characteristic form at the boundary. This governing equation for the cross-
streamwise velocity component can then be solved to obtain the instanta-
neous velocity in the direction normal to the boundary. As shown by Jiang 
and Luo (2003), the open boundary condition formulated upon NSCBC 
gives a reasonable prediction of the entrainment of the ambient fluids.

B. Periodic and Symmetry Boundary Conditions

Periodic boundaries were already mentioned when inflow boundary 
conditions were discussed. In practical applications, the applicability of 
periodic boundary condition is restricted to flow configurations that are 
indeed periodic owing to their geometry, such as flow around turbine 
blades, or channel, pipe, and duct flows with one or more statistically 
homogeneous flow directions. In temporal DNS or LES, where the spectral 
method (Geurts 2004) is used, a periodic boundary is often encountered. 
A periodic boundary may be regarded as an overlapping inflow and out-
flow boundary or an internal face boundary. An internal face boundary or 
a fluid interior boundary does not represent a challenge because the flow 
field outside the domain under consideration is a known quantity from 
computations on the other side of the domain. When flow periodicity is 
assumed, the flow field outside the computational domain is also a known 
quantity, provided by the solutions inside the computational domain in 
the upstream end. Therefore, the specification of periodic boundaries in 
practical CFD should be straightforward, but care should be taken to 
ensure that the numerical accuracy of the scheme is not affected at the 
boundary, which can be done by appropriate programming.

Symmetry boundaries are similar to periodic boundaries, in that the 
flow field outside the domain is a known quantity. The difference between 
a symmetry boundary and a periodic boundary is that the flow field is 
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“mirrored” across a symmetry boundary, while the flow repeats itself 
across a periodic boundary. Symmetry boundaries are encountered when 
a half or a quarter of the flow domain is considered in the simulation due 
to the existence of symmetry in the flow field. Examples include axisym-
metric simulations of round jets or plumes. Although symmetry does not 
exist in a fully three-dimensional turbulent flow field—in fact, asymmet-
ric perturbations are needed to break the symmetry of the flow in a three-
dimensional DNS or LES with symmetric domain and symmetric physical 
conditions at the domain boundaries—symmetry boundaries are often 
used in two-dimensional planar or axisymmetric simulations and some 
three-dimensional simulations, mainly to reduce the computational costs. 
The specification of symmetry boundaries in practical CFD is straightfor-
ward, but care needs to be taken to ensure that the numerical accuracy of 
the scheme is not affected at the boundary.

The preservation of the numerical accuracy of the inner computational 
domain at periodic or symmetry boundaries depends on the details of the 
numerical methods used (i.e., finite difference, finite volume, or finite ele-
ment methods), and how the methods are implemented in the computer 
program. For instance, in a compact finite difference Padé 3/4/6 scheme 
(Lele 1992), the formal accuracy of sixth order holds in the interior of 
the computational domain. The scheme is of third-order accuracy at the 
boundary points, of fourth order next to the boundary points, and of sixth 
order at inner points only. However, the sixth-order accuracy can be pre-
served at the symmetry boundary, as shown by Jiang and Luo (2000b) in a 
simulation of axisymmetric thermal plumes. At the symmetry boundary, 
which is the jet/plume centerline in an axisymmetric case, the symmetry 
conditions can be applied to both the primitive variables and their first- 
and second-order derivatives in the  direction. For a flow variable  in 
the governing equation, the flow field is mirrored across the centerline and 
the variables can be put into two categories:

Category 1: ( ) ( ), ( ) ( ), ( ) ( )  (2.15)

Category 2: ( ) ( ), ( ) ( ), ( ) ( )  (2.16)

Variables without a sign change across the symmetry boundary belong 
to the first category given in Equation (2.15), including density  and the 
streamwise velocity component , while variables that undergo a sign change 
across the symmetry boundary belong to the second category given in 
Equation (2.16), notably the radial (cross-streamwise) velocity component . 
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The notation  in these equations refers to the other side of the symmetry 
boundary. For the Padé 3/4/6 scheme, the expressions here can be used to 
derive a new set of matrices that preserve the formal sixth-order accuracy of 
the scheme at the symmetry boundary, which is exemplified as follows.

In the Padé 3/4/6 scheme, the sixth-order accuracy in the inner domain 
is achieved in the discretization of the first- and second-order derivatives 
in the governing equations. The first-order derivatives at grid point  with 
mapped grid distance  (grid mapping occurs when a nonuniform grid 
is used) can be calculated according to the following discretized equation:

 
1 1

1 1 2 2

2 4  
(2.17)

In Equation (2.17), the constants are given as   3,   (2  4 )/3, and  = 
(4  )/3. Equation (2.17) can be applied only at the inner points 3 2  
with  standing for the total number of grid points in the  direction in 
the computational domain. At the boundary and next-to-boundary points, 
the differentiation has to be skewed, leading to the decay of the numeri-
cal accuracy from the sixth order in the inner domain. For the Padé 3/4/6 
scheme (Lele 1992), a quadratic matrix representing the coefficients on the 
left-hand side of Equation (2.17), which can be conveniently solved using a 
tridiagonal matrix solver for the first-order derivatives, is given as

 

2 4
1 4 1

1 3 1

1 3 1
1 4 1

4 2

� � �

 

(2.18)

The second-order derivatives at the same point can be calculated accord-
ing to the following discretized equation:

 
1 1

1 1
2

22 2
4

2
2

 
(2.19)

In Equation (2.19), the constants are given as   5.5,   (4   4)/3, and 
  (10  )/3. Equation (2.19) is also applied at the inner points 3 2 . 
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At the boundary and next-to-boundary points, the differentiation has to 
be skewed, same as the first-order derivatives. For the second-order dif-
ferentiation of the Padé 3/4/6 scheme, the quadratic matrix representing 
the coefficients on the left-hand side of Equation (2.19) can be given as

 

1 11
1 10 1

1 5 5 1

1 5 5 1
1 10 1

11 1

.

.
� � �

 

(2.20)

For the symmetry boundary condition, the sixth-order formal accuracy 
of the numerical scheme can be preserved by adjusting the coefficients 
given in Equations (2.18) and (2.20) using the symmetry conditions given 
in Equations (2.15) and (2.16). Considering the grid points as shown in 
Figure 2.3 and categorizing the primitive variables as given in Equations 
(2.15) and (2.16), for the first-order derivative at   1, we have

Category 1:

 

0 2 1 3 0 2

1 20 0
, ,

,
� � �   

  

(2.21)

0 2 1 3 0 2

1 2

, ,

Category 2: 22
2 3

2
,

� � �

  (2.22)

Symmetry
Boundary

j
–1 0 1 2 3

r

FIGURE 2.3 Schematic of the grid points near a symmetry boundary.



Numerical Treatment of Boundary Conditions n 61

Following this, the left-hand side of Equation (2.17) for the solution of the first-
order derivatives forms a set of discretized tridiagonal equations whose coef-
ficients are given by the following tridiagonal matrices for both categories:

Category 1: 

3 0
1 3 1

1 3 1

1 3 1
1 4 1

4 2

� � � ;

 

Category 2:

 

3 2
1 3 1

1 3 1

1 3 1
1 4 1

4 2

� � �

 

(2.23)

Similarly, for the solution of the second-order derivatives as shown in 
Equation (2.19), by categorizing the primitive variables at   1, we have

Category 1: 
0 2 1 3 0 2

1 2
2 12

2 2

, ,

2
3 1

2

2 2
4

,

� � �

  (2.24)
Category 2: 

0 2 1 3 0 2

1 2
10

2

, ,

2
1
2

2
4

,

� � �   
  

(2.25)
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The corresponding tridiagonal coefficient matrices are defined as

Category 1:

 

5 5 2
1 5 5 1

1 5 5 1

1 5 5 1
1 10 1

11 1

.
.

.

.
� � � ;

 

Category 2:

 

5 5 0
1 5 5 1

1 5 5 1

1 5 5 1
1 10 1

11 1

.
.

.

.
� � �

 

(2.26)

The new set of matrices given in Equations (2.23) and (2.26) can be eas-
ily implemented in the computer program to achieve the formal numerical 
accuracy at the symmetry boundary. The case shown here indicates that the 
advantageous accuracy offered by the high-order numerical schemes used 
in DNS and LES can be preserved for periodic and symmetry boundaries.

C. Boundary Conditions: Other Relevant Issues

Discussions on the boundary conditions presented above are mainly made 
for the primitive variables and their derivatives. In practical CFD applica-
tions, there are also situations where boundary conditions need to be spec-
ified for fluxes such as mass, momentum, and energy fluxes. In principle, 
they do not represent special difficulties because they are simply combina-
tions of different flow variables. For example, mass flow inlet can be used 
in compressible flows to prescribe mass flow rate at the inflow boundary. 
Boundary condition formulation strategies such as the NSCBC (Poinsot 
and Lele 1992) can still be used to specify such boundary conditions.

Apart from velocity inflow/outflow, wall, periodic, and symmetry bound-
aries, pressure boundary may also be used in practical CFD, including pres-
sure inlet boundary and pressure outlet boundary. Normally, a pressure outlet 
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must be used when the problem is set up with a pressure inlet. For time-de-
pendent DNS and LES, the pressure fluctuations at the boundaries also need 
to be dealt with, in a manner similar to the velocity boundary. For incom-
pressible flows, the pressure inputs at the boundaries define the boundary 
pressures and the pressure change across the domain. In this case, velocities 
at the boundary are not fixed and change with the local pressure gradients 
at the boundary. Other flow quantities at the boundary may be extrapolated 
from the interior domain. For incompressible flows, pressure boundaries may 
be used in open boundary domain problems. For compressible flows, a pres-
sure inlet/outlet also implies a temperature condition at the inlet/outlet. Once 
again, the NSCBC strategy can be used for DNS and LES. In some applica-
tions, inlet vent or intake fan and exhaust fan or outlet vent boundary condi-
tions may be encountered, which are closely related to pressure boundaries. 
An inlet vent or intake fan boundary represents an inlet vent or intake fan 
with specified loss coefficient or pressure jump, flow direction, and ambient 
(inlet) pressure and temperature, whereas an exhaust fan or outlet vent rep-
resents an external exhaust fan or outlet vent with specified pressure jump or 
loss coefficient and ambient (discharge) pressure and temperature.

Finally, it is worth noting that the performance of boundary conditions 
may be controlled by adjusting the computational domain size. For instance, 
selecting boundary location and shape such that flow goes either in or out 
of the domain will lead to better performance of an inflow/outflow bound-
ary. The key point here is that boundary conditions are used to approximate 
the flow field at the boundary; consequently, the closer the boundary con-
dition approximates the physical condition at the boundary, the better the 
performance will be. In addition, boundaries should not be placed in flow 
regions where large gradients in the direction normal to the boundary exist. 
Furthermore, the performance of boundary conditions is also related to the 
grid or mesh distribution and the numerical methods used in the simula-
tions. The quality of numerical results of DNS or LES is the combined product 
of the boundary conditions, numerical methods, and grid resolutions used in 
the simulation. Some applications of boundary conditions in practical DNS 
and LES will be shown in subsequent chapters (from Chapter 4 onwards).
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3C H A P T E R  

Discrete Time 
Integration Methods

Time integration is an integral part of DNS and LES. Both DNS 
and LES require time-dependent simulations due to the unsteady 

nature of turbulence. As shown in the governing equations in Chapter 1, 
temporal or time derivatives are included in those equations. Unsteady 
or time-dependent flows have a fourth coordinate, time, in addition 
to the three spatial coordinates, which must be discretized. Temporal 
derivatives are different from spatial derivatives, in that time derivatives 
are parabolic like—an event at a given instant affects the flow only in the 
future—whereas for spatial derivatives, an event at any space location 
may influence the flow anywhere else. Discretization methods for spatial 
derivatives will be discussed in subsequent chapters when applications of 
DNS and LES are described. This chapter discusses temporal integration 
methods for the time derivative terms in the governing equations. These 
methods for the governing equations of fluid dynamics are very similar 
to those applied to initial value problems for ordinary differential equa-
tions (ODEs). The basic problem is to find the solution  at a short time 
interval  after the initial point. The solution at 1  0   can then be 
used as a new initial condition and the solution can be advanced to 2  

1  , 3  2  , … etc.
For the initial value problems for ODEs, the methods can be either 

explicit or implicit:
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 Explicit: 1 ,  (3.1)

 Implicit: 1 1 1( , )  (3.2)

In an explicit temporal integration method, the solution at the time 
instant +1 is decided from the solution and the related functions at the 
time instant ; therefore, the solutions are simply time-marched involv-
ing straightforward algebra only. In an implicit method, on the contrary, 
an equation has to be solved to obtain the solution at the time instant +1 
due to the involvement of functions at the time instant +1. Implicit meth-
ods are more intensive computationally for each time step compared to 
explicit methods. However, they do not have stringent limitations in time 
step for numerical stability, in contrast to explicit methods that normally 
have time-step restrictions for stability and convergence. Compared with 
implicit methods, explicit methods may offer better accuracy.

The temporal integration of the governing equations for fluid dynamics 
follows similar methods to that for the initial value problems for ODEs. 
For the sake of convenience, the fundamental governing equations for 
an unsteady, three-dimensional, compressible, and viscous flow, given in 
Equations (1.1)–(1.5), are written in vector form as

  
(3.3)

where the column vectors , , , , and  are given by

 ( / )2 2  

 

2

2 2( / ) /
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(3.4)

The temporal integration is essentially finding the variables in the column 
vector , for a new time instant, where the right-hand side in Equation (3.3) 
contains the spatial discretization.

For incompressible flows, the time integration needs special attention. 
With an incompressible solver, the continuity equation as shown in Equation 
(1.17) cannot be used directly since it does not contain any temporal derivative 
term. The time integration is performed for Equations (1.18)–(1.21). However, 
pressure is an unknown quantity in the Navier–Stokes momentum equations 
and needs to be solved from the pressure Poisson Equation (1.23) at each time 
step.

For DNS and LES, the time scales of turbulence are very small and the 
evolution of turbulent structures is very rapid. As a result, the time step 
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in DNS and LES is often not determined by stability considerations, but 
rather by the time resolution requirements. From a numerical point of 
view, explicit methods generally provide high accuracy in time, are easy 
to parallelize, and are computationally more efficient because implicit 
methods would require much larger memory to solve the discretized 
equations at each time step. Consequently, the integration of the gov-
erning equations in time for DNS is almost exclusively based on explicit 
methods because of the very large number of mesh points and the high 
accuracy required. In LES, both explicit and implicit methods have been 
used. In addition, the temporal integration for DNS and LES very rarely 
uses numerical methods that are lower than second-order formal accu-
racy due to the large numerical errors involved in the lower-order time 
integration; therefore, first-order time integration schemes are not dis-
cussed here. In the following sections, Runge–Kutta methods for time 
integration that belong to the category of one-step methods are pre-
sented first, followed by a discussion on the linear multistep methods, 
including the Adams–Bashforth and Adams–Moulton methods. Finally, 
other time integration methods include general implicit methods, and 
other second-order time integration schemes are presented.

I.  HIGH-ORDER RUNGE–KUTTA (RK) METHODS
Runge–Kutta (RK) methods are perhaps the most widely used time inte-
gration methods for DNS and LES. RK methods are an important class 
of methods for integrating initial value problems formed by ODEs that 
encompass a wide selection of numerical methods, and were initially devel-
oped by the German mathematicians C.D.T. Runge and M.W. Kutta in the 
latter half of the nineteenth century. RK methods have been used broadly 
in DNS and LES in recent years to time-march the system of differential 
algebraic equations from the discretization of the governing equations. 
RK methods belong to the category of one-step methods (but with a few 
substeps or stages) for time integration, which refer only to values at one 
previous time instant to determine the current values.

Unlike the first-order explicit Euler’s method, which has a large trun-
cation error per step as it only evaluates derivatives at the beginning of the 
interval (i.e., at , in evolving the solution from  to 1), Runge–Kutta 
methods make use of several intermediate points of the interval from  
to 1. Higher-order temporal accuracy (higher than second order) may 
be obtained with the RK methods.
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Consider a general governing equation given by

 ( ) (3.5)

where  represents a functional containing all spatial derivatives and forc-
ing terms such as the one given on the right-hand side of Equation (3.3). 
Let  denote the numerical approximation of  at , where 0 = 0 is 
the initial time. The basic idea of RK methods is to provide time-marching 
from the th time step to (  + 1)th time step by building a series of “stages” 
or “substeps” that approximates the solution  at various points using sam-
ples of ( ) from the series of early stages. Finally, the numerical solution 

1 is constructed from a combinations of  and all the approximations 
found at the precomputed stages.

As an example, an explicit fourth-order Runge–Kutta scheme to 
advance the solutions from a temporal level  to   1 can be given as
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(3.6)

where the coefficients are 0  1 6, 1  2 , 3  1 6; 1  1 2, 2  1 2,  
3  1, respectively. The RK4 scheme in Equation (3.6) is the classical fourth-

order Runge–Kutta method.
There are a number of different variants of Runge–Kutta methods 

developed to be more efficient than the classical RK scheme. For the time 
integration in DNS and LES, explicit high-order Runge–Kutta schemes 
are computationally efficient and easy to parallelize, and provide high 
accuracy in time. However, the number of stages in the Runge–Kutta 
scheme is larger than the order of accuracy if the order of accuracy is 
higher than four. As a result, such methods require intensive computation. 
Low-storage Runge–Kutta schemes (Williamson 1980), including third- 
and fourth-order schemes, which only require two storage locations, have 
been developed by Carpenter and Kennedy (1994a; 1994b).

As an example of RK3, a family of three-step, compact-storage, third-
order Runge–Kutta schemes, derived by Wray (1986), is presented. Two 
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storage locations are employed for each time-dependent variable and at 
each substep at these locations, say 1 and 2, are updated simultaneously 
as follows:

 1 1 1 2 2 2 1( ) , ( ) 2  (3.7)

The constants ( 1, 2) in Equation (3.7) are chosen to be (2 3, 1 4) for substep 1, 
(5 12, 3 20) for substep 2, and (3 5, 3 5) for substep 3. At the beginning of each 
full time step, 1 and 2 are set to be equal. The data in 1 is used to compute 
the right-hand side ( 1) of Equation (3.3). The computed right-hand side 

( 1) may be stored in 1 to save storage (overwriting the old 1). Equation 
(3.7) is then used to update 1 and 2. In Equation (3.7), the time step  is 
limited by the Courant–Friedrichs–Lewy (CFL) condition for stability.

In DNS or LES, a number of requirements need to be complied with 
when the time integration is performed, including time accuracy, stabil-
ity, and computational efficiency. The formal order of accuracy gives a 
good indication of the accuracy of the scheme. For DNS, the time integra-
tion schemes used are normally third- or fourth-order accurate, whereas 
for LES they are from second- to fourth-order accurate. For explicit RK 
schemes, the formal order of accuracy corresponds to different CFL stabil-
ity limits. For schemes with accuracy in between second and fourth order, 
RK methods gain larger stability regions with growing order of accuracy 
(Drikakis and Rider 2005). For computational efficiency reasons, RK 
methods with fifth order and above are rarely used because of complex-
ity. In practical simulations of DNS and LES, RK3 and RK4 are widely 
used because they provide a good compromise between accuracy, stability, 
and computational efficiency. Apart from the explicit RK methods, there 
is also a large class of implicit RK methods as described by Ascher and 
Petzold (1998) for ODEs. However, implicit RK methods are not preferred 
in DNS and LES, again due to complexity.

Runge–Kutta schemes are mostly suitable for time integration of 
governing equations with “inexpensive” evaluation of function ( ) 
in the governing equation   ( ). The evaluation of function ( ) 
for incompressible f low equations is typically viewed as “expensive” 
(Drikakis and Rider 2005) because it involves the solutions of the 
elliptical pressure Poisson equations at each time step. Due to this 
reason, Runge–Kutta schemes have been mainly used for compress-
ible f low simulations. For compressible f lows involving shock waves, 
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total variation diminishing (TVD) is always a preferred property of 
the numerical schemes because it does not provide nonphysical solu-
tions near the shock waves. The general RK methods given in Equation 
(3.5) can be made TVD under certain conditions. Gottlieb and Shu 
(1998) used RK3 that is compatible with TVD, essentially nonoscilla-
tory (ENO) or weighted ENO (WENO) schemes. Their RK method is 
TVD in the sense that the temporal operator itself does not increase 
the total variation of the solution. The TVD property of the time 
integration scheme plays an important role in the time-marching of 
nonlinear hyperbolic problems. Gottlieb and Shu (1998) also showed 
that the TVD property can be achieved with a four-stage, fourth-or-
der RK4 method, which is, however, quite intensive computationally 
and therefore not very useful in practical simulations. For aeroacous-
tic applications, minimal dissipation and dispersion errors need to be 
achieved by the numerical methods. By choosing the coefficients of the 
RK methods, the dissipation and dispersion errors for the propagation 
of waves can be minimized. The optimized schemes are referred to by 
Hu et al. (1996) as low-dissipation, low-dispersion RK schemes, which 
are applicable to different spatial discretization methods and are of low 
storage.

II.  LINEAR MULTISTEP METHODS: ADAMS–BASHFORTH 
AND ADAMS–MOULTON METHODS

Runge–Kutta methods are one-step methods; that is, only values of the 
immediate previous time step are used to determine the values at the 
current time step. Multistep methods refer to the use of function values 
from several previous time steps in an effort to achieve greater accuracy. 
However, such a claim needs to be assessed carefully since there might be 
other deficiencies. Note that RK schemes can conveniently achieve high-
order temporal accuracy. In the case of linear multistep methods, a lin-
ear combination of the function values from previous time steps is used. 
Linear multistep methods such as  the Adams–Bashforth and Adams–
Moulton methods have been applied to DNS and, in particular, LES.

A. The Adams–Bashforth Methods

The Adams–Bashforth methods were developed by John Couch Adams, 
a British mathematician and astronomer. The methods were then used 
by Francis Bashforth, to solve a differential equation modeling the capil-
lary action, who became associated with these methods. The second-order 
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Adams–Bashforth scheme for time integration has been commonly used 
in LES. It takes the simple form of

 
1 11

2
3[ ( ) ( )]

 
(3.8)

Apparently the method requires the storage of the function values for two 
preceding time steps. This can be a problem at the start of the simulation. 
In a practical simulation, this is handled by the use of lower-order meth-
ods, or sometimes Runge–Kutta methods, until sufficient data along the 
temporal axis has built up. Note that variable time-step sizes may cause 
difficulties in applying the Adams–Bashforth method. Usually an inter-
polation over the time interval  to 1 followed by an integration of the 
interpolated function can be applied; that is,
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where ( ) 1  and ( ) 1 1 . Alternatively, the interpola-
tion can be performed over the previous two time steps, leading to
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The third-order Adams–Bashforth method is widely used in DNS and 
LES and can be written as

 
1 1 21
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(3.11)

At the start of the simulation when the function values for preceding time 
steps are needed but are not available, lower-order methods or Runge–Kutta 
methods may be used. For the third-order Adams–Bashforth method, vari-
able time-step sizes can also be dealt with by applying the same idea of inter-
polation as that for the second-order method.

The Adams–Bashforth methods behave differently from the RK meth-
ods in terms of stability. Unlike the RK methods, the stability region of 
the Adams–Bashforth methods decreases with increasing order (Drikakis 
and Rider, 2005). However, the Adams–Bashforth methods have several 
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advantages over the RK methods for incompressible flow simulations in 
terms of computational efficiency. For instance, the RK3 scheme requires 
three substeps with one pressure solution at each substep and a total of 
three pressure solutions per time step. However, the Adams–Bashforth 
method involves only one overall pressure solution. Since the solution of 
the pressure Poisson equation is not a cheap task, it is preferable to use the 
Adams–Bashforth method rather than the RK method even though the 
Adams–Bashforth method requires a smaller CFL number for stability.

For compressible flow applications involving shock waves, strong stabil-
ity preserving (SSP) is preferred for the time integration method. There are 
linear multistep methods of an SSP type (e.g., Gottlieb et al. 2001; Ruuth and 
Hundsdorfer 2005). These methods are the generalization of TVD time inte-
gration methods, which can achieve high-order formal accuracy as well.

B. The Adams–Moulton Methods

The Adams–Moulton methods are similar to the Adams–Bashforth meth-
ods but are based on implicit formulations instead. In these methods, the 
interpolation includes the current time level. The first-order method is in 
fact the backward Euler method:

 
1 1( )  (3.12)

Unlike the explicit Euler scheme, the implicit scheme is extremely stable 
and is unstable for a small region only.

A second-order Adams–Moulton method is simply the Crank–
Nicholson method based on a trapezoidal integration rule, which is very 
stable for the two variants given by
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or

 
1 1 2( )/

 (3.14)

where ( )/1 2  is evaluated at 1 2 1 2/ ( )/  in Equation (3.14).
The Adams–Moulton methods also have a third-order scheme. Corres- 

ponding to the third-order Adams–Bashforth method given in Equation 
(3.11), the third-order implicit Adams–Moulton method is given as

 
1 1 11

12
5 8[ ( ) ( ) ( )]

 
(3.15)
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Unfortunately, the stability of this third-order scheme is not as good as 
that of the first- and second-order schemes. In fact, the stability region of 
the Adams–Moulton methods continues to shrink as the order of formal 
accuracy increases.

Implicit methods usually result in a system of nonlinear equations 
or linear equations that is not easy to solve in its own right. In practical 
implementations of an implicit method, predictor–corrector methods are 
used instead. A predictor–corrector method involves the use of an explicit 
method to “predict” a time-advanced solution that is substituted into the 
implicit formula in the “corrector” step. Predictor–corrector methods nor-
mally lead to an enhanced stability region over an explicit method. The 
Adams–Moulton methods were solely due to John Couch Adams. The name 
of Forest Ray Moulton (who was a U.S. astronomer) became associated with 
these methods because he realized that they could be used in conjunction 
with the Adams–Bashforth methods as a predictor–corrector pair.

III.  OTHER TIME INTEGRATION METHODS
A. General Implicit Schemes and Backward Differentiation Formulae

The Adams–Moulton methods are one type of implicit method. A large 
number of different classes of implicit schemes exist and can be written in 
general as

 

1
1

( )
 

(3.16)

where  and  are constants with   This scheme employs  previous 
time-step solutions to approximate the solution at the present time step. For 
convenience in description,  is assumed to be a constant in Equation (3.16). 
For variable time steps, the coefficients  and  become functions of the  
time.

All implicit schemes as given in Equation (3.16) give rise to a computa-
tional problem for 1 that can be written in the form

 

1
1

1( ) ( )
 

(3.17)

The right-hand side of Equation (3.17) depends on the solutions of pre-
vious steps only and is therefore known during the time integration. 
The left-hand side involves the unknown 1. Hence, Equation (3.17) 
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represents a large set of coupled nonlinear algebraic equations defining 
all of the computational mesh points. The very large number of equa-
tions and their nonlinearity imply that direct solution methods cannot 
possibly be used to obtain a solution. Therefore, iterative methods such 
as approximate Newton iteration (the Newton’s method or the Newton–
Raphson method) and pseudotime relaxation (Geurts 2004) have to be 
used to solve Equation (3.17). In general, implicit methods have limited 
applications in DNS and LES. Nevertheless, they can be useful in certain 
applications because of their much-enhanced stability over explicit time 
integration schemes.

Implicit methods being used in the context of finite volume algo-
rithms have been described by Venkatakrishnan and Mavriplis (1996) and 
Jameson (1991). Note that there is no fundamental difference in the for-
mulation between finite difference or finite volume methods in the spatial 
derivatives during a temporal integration process. Note also that multi-
grid methods may be used together with the finite volume algorithms in 
which the time-marching is treated as a pseudotime variable.

Among the various implicit methods, the backward differentiation 
formulae (BDF) are considered advantageous over the Adams–Moulton 
methods. Very often, BDF methods are used for solving stiff systems of 
equations. These methods have simple forms and much larger stability 
regions than the Adams–Moulton methods. They are characterized by 
evaluating the function at the advance time only. The second-order BDF 
method can be written as
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The third-order BDF method can be given as
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The stability region of the third-order BDF method is slightly smaller than 
its second-order counterpart.

B. Other Second-Order Schemes

Time integration methods that are of second-order accuracy are normally 
considered inadequate for DNS. However, second-order accurate time 
integration methods are often used in LES and were very popular in CFD. 
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Methods such as the Lax–Wendroff technique and MacCormack’s tech-
nique are second-order accurate in both space and time based on explicit 
finite difference techniques. Implicit time-marching methods such as the 
approximately factored Beam–Warming algorithm can also be used to 
achieve second-order accuracy for time integration.

The Lax–Wendroff method (1960) was developed mainly for the time-
marching of Euler equations. An important feature of the Lax–Wendroff 
method is combined time and space differencing. It can be used for the 
solution of hyperbolic and parabolic partial differential equations. As 
shown by Anderson (1985), using a Taylor series expansion in time for 
all the variables, cancelling the first-order error term in the Taylor series 
expansion, and expressing the derivatives as second-order central differ-
encing, the Lax–Wendroff method allows explicit calculation of the flow 
field variables at all the grid points at time  from the known flow field 
variables at time .

There are a number of variants of the Lax-Wendroff method. Richtmyer 
(1963) derived a useful variant in a predictor–corrector format, in which an 
intermediate time level   1 2 was involved. Perhaps the most well-known 
variant of the Lax–Wendroff method is that due to MacCormack (1969). In 
MacCormack’s technique, a backward differencing is used as the predictor 
and a forward differencing is used as the corrector, or vice versa. Higher-
order methods (higher than second order) of the Lax–Wendroff methods 
are possible. However, the complexity of the algorithms increases geomet-
rically as the order increases. Therefore, these higher-order methods are of 
very limited use for practical CFD calculations. The Lax–Wendroff meth-
ods can also be used in conjunction with the WENO scheme for com-
pressible flow simulations involving shock waves (e.g., Qiu and Shu 2003). 
The principles of the Lax–Wendroff method can in general be applied to 
incompressible flows. However, the pressure Poisson equation needs to be 
solved at each substep, which makes the method costly.

For second-order time integration methods, implicit methods can 
offer improved stability over the explicit methods. For example, the 
implicit Beam–Warming methods (Beam and Warming, 1976) are very 
stable. The methods can be second-order accurate both in space and in 
time. Ekaterinaris (1999; 2000) showed fourth-order formal accuracy for 
the implicit operators with higher-order discretization of the right-hand 
side. In general, the complexity of high-order implicit methods is higher 
than that of high-order explicit methods. Implicit methods can be com-
putationally less effective than explicit methods because the solution of a 
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set of nonlinear algebraic equations is involved in each step of the time-
marching.
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4C H A P T E R  

DNS of Incompressible Flows

As discussed in chapter 1, incompressible flows represent a broad 
range of fluid flows with relatively low speeds, typically for Mach 

number   0.3. Due to the very high computational costs associated with 
DNS, state-of-the-art DNS is mainly restricted to low Reynolds number 
flows in simple geometries. There has been a substantial amount of DNS of 
incompressible flows in simple geometries due to the relatively low speeds 
of incompressible flows, and hence relatively lower computational costs 
compared with high-speed flows when all the scales need to be resolved. 
One example is DNS of channel flows, which are of great importance to 
many practical applications and fundamental fluid dynamics research. 
This chapter presents a few applications of DNS to incompressible flows 
with some sample results of DNS of channel flows. Discussions on the 
numerical features of the simulations are also presented.

I. SAMPLE RESULTS: DNS OF CHANNEL FLOWS
A. DNS of a Separated Channel Flow with a 

Smooth Profile (Marquillie et al. 2008)

Marquillie et al. (2008) solved the incompressible three-dimensional, 
time-dependent Navier–Stokes equations along with a Poisson equation 
for calculating pressure for a flow in a channel with a smooth profile. For 
the spatial discretization, fourth-order central finite differences were used 
for the second derivatives in the streamwise  direction. All first deriva-
tives of the flow quantities appearing explicitly in the time-advancing 
scheme and the first derivatives in the  direction were discretized using 
eighth-order finite differences. Chebyshev collocation was used in the 
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wall-normal  direction. The transverse direction  was assumed periodic 
and was discretized using a spectral Fourier expansion. For time integra-
tion, implicit second-order backward Euler differencing was used; the 
Cartesian part of the Laplacian was taken implicitly, whereas an explicit 
second-order Adams–Bashforth scheme was used for other operators as 
well as for the nonlinear convective terms. The three-dimensional system 
was uncoupled into two-dimensional subsystems and the resulting two-
dimensional Poisson equations were solved efficiently using the matrix 
diagonalization technique. The simulation used a significant amount of 
computing resources. A spatial resolution of 1536  257  384 was finally 
used, which corresponds to a maximum mesh size of 3 9.  in the nor-
mal direction and 6 8.  in the other two directions, where  is the local 
isotropic Kolmogorov scale. The cross-sectional computational grid is 
sketched in Figure 4.1.

Several profiles of the mean streamwise velocity are plotted in Figure 4.2. 
The mean velocity profile at the outlet does not recover the same shape 
as that at the inlet. In order to study the global motion of the turbulent 
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FIGURE 4.1 Mesh distribution: DNS of a separated channel flow with a 
smooth profile. (Marquillie et al. 2008; with permission from Taylor & 
Francis.)
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FIGURE 4.2 Profiles of mean streamwise velocity: DNS of a separated 
channel flow with a smooth profile (Marquillie et al. 2008; with permis-
sion from Taylor & Francis.)
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structures, isovalues of the second invariant of the velocity gradient ten-
sor indicating the flow vortical structures are presented in Figure 4.3. 
The vortices generated near the separation are much more intense than 
the coherent structures generated in a plane channel flow. Consequently, 
the isovalue used to detect the vortices downstream of the bump was not 
adapted to detect structures at the inlet of the simulation. The generation 
of intense coherent structures is nearly steady in time and space, but the 
localization is different at the two walls and is slightly downstream of the 
position of the first inflexion point of the mean velocity profile. However, 
the typical size of the vortices seems comparable at both walls and varies 
very slowly in time. This behavior may be due to the detection criteria, 
which only capture well-formed and intense vortices. Almost no vortices 
are detected in the upstream part, but strong ones are generated close to 
the wall in the downstream part of the separation region. These vortices 
interact with those convected in the outer boundary layer. This leads to 
nontrivial motions of these small near-wall vortices. Only a small part of 
them is convected by the mean reversal flow very close to the wall; most 
of them are either destroyed by the shear or by interaction with larger 
vortices. As shown by the instantaneous velocity field (Figure 4.4), some 
vortices lift up and occasionally generate an ejection of fluid in the outer 
region. This study revealed the fine details of the near-wall structures in a 
separated channel flow using highly accurate numerical methods, which 
is difficult to achieve using lower-order numerical schemes.

FIGURE 4.3 Isovalues of the second invariant of the velocity gradient ten-
sor: DNS of a separated channel flow with a smooth profile. (Marquillie 
et al. 2008; with permission from Taylor & Francis.)
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B. DNS of Turbulent Heat Transfer in Pipe Flows  
(Redjem-Saad et al. 2007)

The problem of heat transfer in pipe flows is of importance in mechani-
cal and many other engineering fields, and is encountered in a variety 
of applications such as in heat pipes, combustion chambers, and nuclear 
reactors. Redjem-Saad et al. (2007) performed a direct numerical simu-
lation of turbulent heat transfer in a pipe with a Reynolds number Re  
5500 based on the pipe radius. The effect of Prandtl number on the flow 
field was investigated. The flow configuration is a forced, fully developed, 
incompressible pipe flow of a Newtonian fluid, heated with a uniform heat 
flux imposed on the pipe wall. The governing equations were discretized 
on a staggered grid in cylindrical coordinates. Numerical integration was 
performed using a finite difference scheme, second-order accurate in space 
and time. The time-advancement employed a fractional step method. A 
third-order Runge–Kutta explicit scheme and a Crank–Nicolson implicit 
scheme were used to evaluate the convective and diffusive terms, respec-
tively. Uniform computational grid and periodic boundary conditions 
were applied to the circumferential and axial directions while the wall 
temperature fluctuations were assumed to be zero, corresponding to a 
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FIGURE 4.4 Velocity vectors within the separation region: DNS of a sepa-
rated channel flow with a smooth profile. (Marquillie et al. 2008; with per-
mission from Taylor & Francis.)
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mixed-type boundary condition. In this case the time-averaged wall heat 
flux is uniform in space, and the wall temperature is not time dependent 
and varies linearly along the streamwise direction.

Figure 4.5 shows the instantaneous temperature fluctuations for 
three different Prandtl numbers. For Pr  0.026, a regular distribution is 

FIGURE 4.5 Instantaneous temperature fluctuations at various Prandtl 
numbers: DNS of turbulent heat transfer in pipe flows. (Redjem-Saad et al. 
2007; with permission from Elsevier Science Ltd.) 
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observed while for Pr  0.2, streaky structures are observed. At the higher 
Pr number, the conductive region becomes thinner, leading to a reduc-
tion in molecular heat flux and an enhancement in the turbulent heat 
flux normal to the wall. These features are more pronounced in Figure 
4.5(c), where the Prandtl number is even higher. The Prandtl number is 
an important parameter in heat transfer problems and is a dimension-
less number approximating the ratio of momentum diffusivity (kinematic 
viscosity) and thermal diffusivity. In heat transfer problems, the Prandtl 
number controls the thickness of the thermal boundary layer relative to 
that of the momentum boundary layer. When Pr is small, it means that 
the heat diffuses very quickly compared to the velocity (momentum). The 
results indicate that the Prandtl number has a significant impact on the 
instantaneous temperature fields, and therefore a significant impact on 
the heat transfer characteristics of turbulent pipe flows.

C. DNS of Turbulent Channel Flow under Stable 
Stratification (Iida et al. 2002)

Iida et al. (2002) studied a turbulent channel flow under stable stratifica-
tion by means of DNS. The governing equations solved are the standard 
set of hydrodynamic equations (Navier–Stokes) with the assumption of 
the constant physical properties and the Boussinesq approximation. For 
spatial differentiation, a spectral method was used to obtain the solutions 
with Fourier series in two directions with periodic boundary conditions. 
A Chebyshev polynomial expansion was used in the wall-normal direc-
tion with a no-slip boundary condition assumed at the two walls, which 
were kept at different but uniform temperatures.

Figure 4.6 compares the isosurfaces of the nondimensional tempera-
ture under neutral (Grashof number   0) and stable density stratifi-
cation (   107), respectively. The Grashof number is a dimensionless 
number frequently used in buoyant fluid flows and heat transfer problems 
in enclosures that approximates the ratio of the buoyancy to viscous force 
acting on a fluid. A significant difference is observed between these two 
cases with and without buoyancy effect. In the case without buoyancy, the 
temperature isosurface shown in Figure 4.6(a) is violently torn up, indicat-
ing that the temperature is effectively mixed by turbulent motions. In the 
buoyant case shown in Figure 4.6(b), under stable stratification, undula-
tions of the isosurface become smaller, and thermal mixing due to turbu-
lence is significantly less.
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Figures 4.7 and 4.8 show the instantaneous flow structures for the veloc-
ity vector and the isosurfaces of the pressure fluctuations. The locations of 
the    and    planes included in Figure 4.7 are indicated by the black 
bars in Figure 4.8. A wave-like motion associated with the pressure fluctua-
tion is clearly observed in the central region of the channel. It is noted that 
a vertically elongated low-pressure region is often generated between the 
wall and the crest of the wave motions, indicating the close association 
between them. The streamwise vortices reach down near the wall and are 
associated with the wave crests. These low-pressure regions are elongated 
in the horizontal direction. The results indicated the complex flow struc-
tures in the flow field and the instantaneous correspondence between 
velocity and pressure.

(a) Gr = 0

(b) Gr = 107

FIGURE 4.6 Isosurfaces of nondimensional temperature: DNS of turbulent 
channel flow under stable stratification. (Iida et al. 2002; with permission 
from Elsevier Science Ltd.) 
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D. DNS of Coherent Structure in Turbulent Open-Channel 
Flows with Heat Transfer (Yamamoto et al. 2000)

In the DNS study of the open-channel flow with heat transfer by 
Yamamoto et al. (2000), the governing equations of the incompress-
ible Navier–Stokes equations with the Boussinesq approximation were 
solved. Numerical integration of the governing equations was based on 
a fractional step method and time integration was performed using a 
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FIGURE 4.8 Instantaneous isosurfaces of the low pressure region of the 
case with DNS of turbulent channel flow under stable stratification. (Iida 
et al. 2002; with permission from Elsevier Science Ltd.) 
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the case with DNS of turbulent channel flow under stable stratification. 
(Iida et al. 2002; with permission from Elsevier Science Ltd.)
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FIGURE 4.9 Isosurfaces of second invariant velocity gradient tensor: DNS 
of the open-channel flow with heat transfer. (Yamamoto et al. 2000; with 
permission from Springer-Verlag.)
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second-order Adams–Bashforth scheme. A second-order central differ-
encing scheme was adopted for the spatial discretization. As the bound-
ary conditions for fluid motion, free-slip condition at the free surface, 
no-slip condition at the bottom wall and the cyclic conditions in the 
stream- and the spanwise directions were imposed, respectively. As for 
the equation of energy, temperatures at the free surface and the bottom 
wall were kept constant.

Figure 4.9 shows the isosurface representation of a second invariant 
velocity gradient tensor. The isosurface regions correspond to the strong 
vorticity containing regions. Near the bottom wall, the streamwise vortex 
stretched out in the streamwise direction can be seen. This indicates that 
turbulence is generated near the wall. However, the free surface makes 
no contribution to turbulence generation in open-channel flows at the 
relatively low Reynolds number of 200 considered (based on the friction 
velocity and flow depth).

II.  NUMERICAL FEATURES: DNS  
OF INCOMPRESSIBLE FLOWS

From the above examples, it can be seen that there are some common 
features in the numerical methods used in the DNS studies of incom-
pressible channel flows. For DNS applications, high-order schemes 
are normally needed for spatial discretization. In general, lower-order 
numerical schemes use fewer data points (either in space or time) since 
smaller stencils are normally needed, and thus require less computing 
resources, obtaining better speed but potentially lower accuracy than 
high-order numerical schemes that use more data points and require 
more computing resources. For the spatial discretization, finite differ-
ence schemes with at least second-order numerical accuracy have been 
used. The spectral method is also used in flow directions when periodic 
boundary conditions are employed. In addition, Chebyshev collocation or 
polynomial expansion has been used. These methods will be briefly dis-
cussed, including their formulations, advantages, and disadvantages. For 
the temporal integration of the governing equations, the common feature 
in these applications is the use of the fractional step method for the time 
advancement of the incompressible flow governing equations, apart from 
the time integration methods discussed in Chapter 3. For incompressible 
flows, the pressure needs to be obtained from the Poisson equation solver, 
which will be briefly discussed, together with the fractional step method. 
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Discussions on the boundary conditions were presented in Chapter 2 and 
were omitted here.

A. Spatial Discretization Schemes

All DNS codes are dependent on the types of numerical schemes used 
to translate the Navier–Stokes equations into a finite form appropriate 
for the computational grids/cells. In the process of discretization and 
numerical solution of the discretized equations, there are competing 
needs of accuracy, stability, and computing speed. It has been a consen-
sus that high-order numerical schemes should be used in DNS. Highly 
accurate numerical schemes are needed in DNS because turbulence may 
not be resolved using low-order numerical schemes such as the first-order 
scheme, where numerical diffusion can be larger than small-scale turbu-
lent transportation. It is well known that high-order numerical schemes 
in DNS and LES can significantly improve predictions of vortical and 
other complex unsteady flows. When accuracy is a crucial requirement 
of the simulation such as in a DNS, application of high-order schemes is 
expected to decrease the computing costs since the error in the functional 
approximation is proportional to  for an th-order accurate numeri-
cal scheme with  representing the grid spacing. In a high-order scheme, 
the error in the functional approximation decreases much faster with the 
grid spacing than that in a lower-order scheme. In a CFD simulation, the 
computing time depends on the order of accuracy, the complexity of the 
method, and the grid resolution. In DNS and LES, to achieve the required 
level of accuracy, the employment of high-order numerical schemes may 
reduce the overall computing costs compared with using lower-order 
numerical schemes, provided that the formulations of the high-order 
numerical schemes are not overly complex; for example, a small or com-
pact stencil can be used. As discussed by Ekaterinaris (2005), high-or-
der numerical schemes are a broad concept that can include high-order 
finite difference and finite volume methods, the discontinuous Galerkin 
method, and spectral and spectral volume methods. Although second-
order accuracy schemes have been used in DNS, such as in the channel 
flow examples by Redjem-Saad et al. (2007) and Yamamoto et al. (2000), 
most of the current DNS codes for computational fluids and combustion 
employ numerical methods that are fourth-order accurate or higher.

The majority of the existing DNS codes employ high-order finite dif-
ference schemes, due to the fact that their computing costs are generally 
lower than high-order finite volume methods (Ekaterinaris 2005). In 
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DNS codes (and in LES codes as well), it is preferable to have methods 
that are nondissipative. Numerical schemes with dissipations such as the 
first-order, third-order, and fifth-order schemes normally lead to errors in 
flow regions with large gradients, which is not suitable for predictions of 
vortical flow fields. Although dissipative upwind schemes are more stable 
and easier to converge than nondissipative central differencing schemes, 
upwind biased high-order schemes (such as the third-order, fifth-order, 
etc.) inherently introduce some form of artificial smoothing that makes 
them inappropriate for long time integrations encountered in direct and 
large-eddy simulations. Consequently, nondissipative central differencing 
schemes have been predominantly used in DNS codes, where the second-
order scheme has been adopted as the numerical scheme with the lowest 
acceptable accuracy for DNS applications.

High-order central-difference schemes can be conveniently obtained 
from Taylor series expansion. The stencils for the fourth-, sixth-, and 
eighth-order accurate symmetric, explicit, centered schemes are five-, 
seven- and nine-point wide, respectively. Due to the high comput-
ing costs involved in the schemes higher than fourth order, they are 
rarely used in CFD codes. For efficient computing, it is essential for 
higher-order schemes to use narrow stencils. The compact finite dif-
ference (Padé) scheme presented by Lele (1992) was perhaps the first 
systematic attempt to develop high-order accurate, narrow stencil, 
finite difference schemes appropriate for problems with a broad range 
of scales such as those encountered in turbulent f lows and combustion. 
The Padé scheme has been widely used and now is the state-of-the-art 
numerical method in DNS codes for f low and combustion phenom-
ena. The main advantages of the Padé scheme are the low computing 
costs associated with the small stencil support and the simplicity in 
boundary condition treatment. For instance, a seven-point wide sten-
cil can yield a compact tenth-order accurate scheme. By varying the 
coefficients in the compact approximations for the first- and second-
order derivatives of the Navier–Stokes equations in the computational 
domain, schemes of different accuracy can be achieved. Lele (1992) 
systematically presented the Padé schemes with different orders of 
accuracy, including the fourth-order explicit scheme, the compact 
fourth-order scheme, sixth-order scheme, eighth-order scheme with 
tridiagonal matrix inversion, eighth-order scheme with pentadiago-
nal matrix inversion, and the tenth-order schemes, which have been 



DNS of Incompressible Flows n 93

broadly used in DNS codes. The details of these schemes can be found 
in Lele (1992). The formulation of one such scheme will also be pre-
sented in the next chapter.

The most significant advantage offered by finite difference schemes 
is the flexibility in the specification of boundary conditions, which are 
much more difficult in other accurate methods such as spectral meth-
ods. Spectral methods can be used to calculate the spatial derivatives 
in the governing equations with simple boundary conditions such as 
periodic boundaries. Although spectral methods are not easy to apply 
for practical boundaries, complex domains, and compressible flows with 
discontinuities, they are numerically accurate with low computing costs. 
Due to this advantage, they have been broadly used in DNS of incom-
pressible flows such as in the channel flow simulations performed by Iida 
et al. (2002) and Marquillie et al. (2008). These DNS of fluid flows with 
at least one periodic boundary using spectral methods are often referred 
to as temporal DNS, in contrast to spatial DNS where no periodicity is 
assumed.

In finite difference, finite volume, or even in finite element methods, 
approximate derivatives are obtained by using local information of the 
solution. In other words, only values of the solution in the neighborhood 
of the point where the derivative is evaluated are taken into consideration. 
They are methods based on local information, and therefore the accuracy 
of the numerical scheme depends on how many and how the neighbor-
ing points have been taken into consideration. In contrast to these “local” 
methods, the spectral method or pseudospectral method (Canuto et al. 
1988) is based on a global coupling, which is an implicit differencing 
method in view of the requirement of solving a linear system of equations. 
The starting point of the spectral method is the representation of the solu-
tion in a set of basic functions that are defined in the entire flow domain. 
A basic spectral method involves three main steps:

Step 1. Choose the basis functions: An appropriate set of global basis 
functions ( )  for 0 1, , ,…  has to be selected in order to arrive 
at a spectral discretization of a specific problem. In a basic spectral 
method dealing with periodic boundaries, Fourier modes are nor-
mally selected. The requirements posed by the boundary conditions 
decide the choice of basis functions, and ideally, basis functions that 
individually satisfy boundary conditions are needed.
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Step 2. Expand the desired solution: The flow solution variables, for 
example, ( ), can be approximated by a finite dimensional expan-
sion in terms of the basis functions

 
( , ) ( , ) ( ) ( )

0  
(4.1)

In Equation (4.1), ( ) represents the time-dependent expansion 
coefficients.

Step 3. Determine the expansion coefficients: A weighed residual can 
be formulated in order to obtain equations from which the coefficients 
follow. The basic problem may be expressed as �( ) where �  is the 
total differential operator and  is a possible forcing term. The residual 
can then be defined as ( ) ( ) .�  In a practical simulation, the 
weighed residual approach in terms of ( ) is based on

 
( ) ( ) ; , , ,0 0 1 …

  
(4.2)

In Equation (4.2),  represents the flow domain and a set of weighing 
functions  are introduced that measure the deviation of the approxi-
mate solution  from the analytical solution .  Substituting Equation 
(4.1) into Equation (4.2) yields a system of differential equations for the 
unknowns { } that need to be solved in order to obtain the flow solution. 
There are two common choices for the weighing functions. One choice is 
the Galerkin method, which requires the residual ( ) to be orthogonal 
to the base functions:

 
( ) ( ) ( )

 
(4.3)

In Equation (4.3),  is the Kronecker delta. In this choice, the weighing 
function is given as ( ) ( ). In another choice of the weighing 
function, the values of the residual are required to be zero in a set of loca-
tions in the flow domain

 ( )( ) ; , , ,0 0 1 …   (4.4)

In the latter choice leading to Equation (4.4), the weighing function is 
given as ( ), where  is the collocation or grid points.
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For spectral methods dealing with periodic boundaries, the central 
objective is to determine the expansion coefficients { }. The entire simu-
lation can be performed in the spectral space and a transform back to the 
physical space is carried out only when it is necessary. For spectral meth-
ods in a broad sense, the pseudospectral method is a slight adaption of the 
method described above. In a pseudospectral approach, the basic setting 
of the method is in the physical space and the grid values of the variable        

( ) need to be approximated instead of the expansion coefficients. In 
order to obtain derivatives, a transform to the spectral space needs to be 
applied, leading to the derivatives in the spectral space that can be trans-
formed back to the physical space. When periodic boundary conditions 
are used, a finite Fourier series may be adopted:

 
( , ) ˆ ( )

 
(4.5)

In Equation (4.5), ( , , )  and the summation over  runs from 
/2  to /2 . The first- and second-order derivatives can be found by 

multiplication of the Fourier coefficient ˆ  with ( )  and ( )2  and 
transforming the spectral space representation back to the physical space 
(Canuto et al. 1988). The pseudospectral approach represents an effective 
method in dealing with the nonlinear terms. In periodic problems, the 
solution is expanded in a finite number of Fourier modes. Within this 
finite dimensional subspace, the first and second derivatives of the modes 
can be represented exactly. There is no discretization error involved and 
therefore spectral methods are normally very accurate. The only errors 
that arise in spectral methods are due to the finite number of modes con-
sidered, which are the so-called aliasing errors. The aliasing errors can be 
tackled in various ways and further details can be found in the book by 
Canuto et al. (1988). When the grid resolution is very high such as in most 
of the DNS studies, the errors are not significant because the contribu-
tions of the smallest scales may be sufficiently small. However, the aliasing 
errors need to be treated more precisely when the grid resolution is high, 
such as in some LES applications.

The spectral methods discussed so far have been restricted to periodic 
boundaries, which have limited practical applications although they are 
highly accurate. For nonperiodic problems, the use of Fourier expan-
sions is very difficult or not optimal in view of an efficient compliance 
with boundary conditions. For the choice of the basis functions (step 1 
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of a basic spectral approach), Fourier modes can no longer be selected for 
nonperiodic boundaries. Instead, a set of orthogonal polynomials may 
be used for nonperiodic boundaries, among which the use of Chebyshev 
polynomials is most popular. For instance, in the examples shown in the 
previous section (Iida et al. 2002; Marquillie et al. 2008), Chebyshev col-
location or Chebyshev polynomial expansion has been used for spatial 
discretization. In the following, spectral methods for nonperiodic prob-
lems are briefly described with focus given to the Chebyshev polynomials. 
The description closely follows Geurts (2004), which was adapted from 
the notes by Dijkstra (1999: Pseudospectral collocation methods. Lecture 
notes JMBC course Computational Fluid Dynamics III, University of 
Twente, The Netherlands).

The most important procedure in establishing spectral methods for 
nonperiodic problems is the specification of the collocation derivative 
matrix, which proceeds in a few steps (Geurts 2004). For general poly-
nomials on general grids, considering the interpolation of a solution , 
which is known by its values  on grid points [ , ], the polynomial 
of degree (   1) that vanishes at the grid points can be given as

 
( ) ( )

0  
(4.6)

In Equation (4.6), 0. Considering ( ), a cardinal polynomial 
 can be defined as

 
( ) ( )

( )
 

(4.7)

The cardinal polynomial  has degree  and satisfies ( ) . The 
cardinal polynomials may be used to represent the polynomial ( ) of 
degree , which interpolates  at the grid as follows:

 
( )( ) ( )

0  
(4.8)

It can be verified that ( )( ) . Considering ( ) [ , ], the 
quality of the interpolation may be expressed by

 
( ) ( )( ) ( ) ( )

( )!

( )1

1  
(4.9)
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The derivative of the interpolating polynomial at    is given by

 
( )( ) ( ) ; , , ,

0

0 1 …

  
(4.10)

Equation (4.10) implies in matrix notation ( ) , where  denotes the 
( ) ( )1 1  collocation derivative matrix with elements   ( )  [ ( )].
The differentiation of  can be given as

 
( ) ( )

( )
( )

( )2
 

(4.11)

Substituting    into Equation (4.11), the elements of  can be given as

 
( )

( )
( )

;
  

(4.12)

 
( )

2
 

(4.13)

Higher-order derivatives may also be obtained using the collocation 
derivative matrix . It can be shown (Geurts 2004) that the second deriva-
tive matrix can be obtained by squaring the first derivative matrix (2)  

2, which can also be generalized as ( )  ( 2 ) for a -order 
derivative.

The use of Chebyshev polynomials is by far the most popular when the 
flow domain is nonperiodic, due to the fact that the interpolation error in 
Equation (4.9) is minimal on a proper grid. The Chebyshev polynomials 
may be defined by the recursion

 0 1 1 11 2 1( ) ; ( ) ; ( ) ( ) ( ); ,, ,2 …   (4.14)

From the trigonometric representation [cos( )] cos( ), for a (   1) 
th Chebyshev polynomial 1( ), it can be obtained that

 
1

1
20
1

0 1( ) cos ; , , ,at …
 

(4.15)
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The roots given in Equation (4.15) are all simple and in the interior of 
( 1, 1), and the set  is called the Gauss grid. For the Chebyshev polyno-
mial, the  ( ) corresponding to Equation (4.6) can be given as

 
( ) ( ) ( )1

0

2
 

(4.16)

On the Gauss grid, it can be shown that the interpolation error bound 
(Geurts 2004) is given by

 
|| ( )|| max | ( ) ( )( )|

(1 1

1
2 11

1
)!

|| ||( )

 
(4.17)

Following the derivations of Equations (4.12) and (4.13), for the Chebyshev 
polynomial, the elements of the first derivative matrix can be derived as

 

( ) ;1 1
1

2

2
 

(4.18)

 
2 1 2

 
(4.19)

From Equations (4.18) and (4.19), the entries for the second deriva-
tive matrix can also be found. The disadvantage of the Gauss grid 
for the Chebyshev polynomial is that the boundaries themselves 
do not enter the grid. An alternative grid, referred to as the Gauss-
Lobatto grid (Canuto et al. 1988), including the boundaries, is given 
by cos( / )  for 0 1, , ,…  and is built on ( ) ( ) ( ).2 1
Canuto et al. (1988) also discussed further extensions involving addi-
tional coordinate transformations to accommodate more complex and/
or semi-infinite f low domains. The Chebyshev polynomials are quite 
different from those in other discretization methods such as finite dif-
ference schemes, where uniformity of the grid typically gives rise to an 
increased accuracy. For the approaches based on the Chebyshev poly-
nomials, optimal performance of the numerical methods is achieved 
by using a nonuniform grid such as a Gauss grid or a Gauss–Lobatto 
grid.
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Some advantages of a Chebyshev pseudospectral method include the 
very high accuracy associated with the absence of numerical dissipation 
and dispersion, high resolution near boundaries such as no-slip walls, 
and exponential convergence (Canuto et al. 1988). Unlike the pure spec-
tral method using Fourier modes for periodic boundaries, Chebyshev 
polynomials can be applied for nonperiodic boundaries. However, such 
a method does not have flexibility in specifying the grid distribution 
according to the change of the flow field. Using Chebyshev polynomials, 
the specification of boundary conditions such as inflow/outflow bound-
aries is extremely difficult. The difficulty is associated with the choice 
of basis functions that satisfy the boundary conditions. Consequently, 
the Chebyshev polynomial expansion has been predominantly used in 
the derivative evaluations of the wall-normal direction in many DNS 
applications.

B. The Fractional Step Method

The issues of accuracy, stability, and computational speeds are relevant to 
both spatial discretization and time integration. Numerical methods for 
time integration are an integral part of DNS and LES, which have to be 
time-dependent simulations. Chapter 3 was devoted to time integration 
methods, particularly to high-order time integration methods suitable for 
DNS and LES. Most of the time integration methods used in the examples 
presented for DNS of incompressible channel flows were already covered 
in that chapter. An exception is the fractional step method for incom-
pressible flows, which has been broadly used in the time-advancement of 
incompressible DNS (e.g., Redjem-Saad et al. 2007; Yamamoto et al. 2000), 
but not covered in Chapter 3. In the following, the fractional step method 
for time advancement is briefly presented.

For incompressible flows, the fundamental governing equations lack an 
independent equation for the pressure. The continuity equation cannot be 
used directly. The fractional step method solves the governing equations 
for incompressible flows in an effective manner, which forces the continu-
ity equation to be satisfied. In this method, first an intermediate velocity 
field is found that does not normally satisfy continuity, and then by using 
this velocity field an equation for a virtual scalar quantity is found that is 
related to the pressure. From this scalar both the final velocity field and 
the pressure can be calculated, as described by Kim and Moin (1985).

The fractional step method is also referred to as the projection method, 
first proposed by Chorin (1968) and Temam (1969) and later successfully 
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applied to the simulation of unsteady flow problems by Kim and Moin 
(1985). There are various versions of fractional step methods, slightly dif-
fering from each other. In the fractional step method, a common practice 
for the temporal discretization of the unsteady incompressible Navier–
Stokes equations is to apply an explicit scheme for the convection terms 
and an implicit scheme for the diffusion terms. The explicit treatment of 
the nonlinear terms eliminates the need for linearization, whereas the 
implicit treatment of the diffusion terms eases the numerical stability 
restriction.

As demonstrated by Kim and Moin (1985), the second-order Adams–
Bashforth scheme for the convection terms and the second-order Adams–
Moulton scheme for the diffusion terms were used for the temporal 
discretization of the unsteady incompressible Navier–Stokes momentum 
equations. The fractional step method essentially decoupled the pressure 
and velocity, which obtained the time-dependent pressure and the diver-
gence-free velocity satisfying the continuity equation. With this approach, 
the discretized governing equations can be expressed as
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In Equations (4.20)–(4.22), �  is the intermediate velocity component and 
1  is the final velocity field with superscript   1 representing the current 

time step,  is a scalar related to pressure,  represents the convection term, 
and  represents the diffusion term. The detailed forms of these terms can 
be found in Kim and Moin (1985), which can also be readily obtained from 
the fundamental governing equations for an incompressible flow presented 
in Chapter 1. Equations (4.21) and (4.22) can be combined to eliminate 1 , 
leading to the pressure Poisson equation given in terms of . Once this pres-
sure Poisson equation is solved, 1  can be obtained from Equation (4.21). 
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Therefore, the time advancement of the fractional step consists of the fol-
lowing steps:

Step 1. Calculate a predicted velocity or an intermediate velocity 
� 1 from Equation (4.20).

Step 2. Solve the Poisson equation for the (modified) pressure.

Step 3. Correct the velocity to enforce mass conservation using 
Equation (4.21).

Numerical solution of the Poisson equation is an integral and important 
part of the numerical procedure. There are a variety of methods that can be 
used to solve the pressure Poisson equation. The commonly used method 
is based on the traditional tridiagonal matrix algorithm (TDMA), also 
known as the Thomas algorithm, which is a simplified form of Gaussian 
elimination that can be used to solve tridiagonal systems of equations. The 
conventional TDMA or Thomas algorithm directly solves the discretized 
equations in one dimension and can be applied iteratively, in a line-by-line 
fashion, in the other two dimensions to solve multidimensional problems. 
When compared against direct solving methods, the conventional TDMA 
is computationally inexpensive and has the advantage of using the mini-
mum amount of memory storage. So far, the conventional TDMA solver 
has been used for a wide variety of applications in spatial flow simulations 
in which the discretized equations can be reduced to a tridiagonal form 
in each of the three dimensions of space. For temporal DNS with periodic 
boundaries, spectral methods as discussed before can also be conveniently 
used to solve the pressure Poisson equation.

In the early version of the fractional step method given by Kim and 
Moin (1985) and the version of Xu et al. (2005), the pressure was neglected 
in the first step of the method and there might be some difficulties to 
assign the correct boundary conditions to the intermediate velocity field. 
To avoid this, the pressure at the previous time step may be used explicitly 
in the first step, which makes the boundary conditions of the intermediate 
velocity the same as the real velocity field. Finally, it is worth mention-
ing that the fractional step method of Kim and Moin (1985) is a second-
order scheme. Higher-order fractional step methods can be achieved by 
involving higher-order time-integration schemes such as those discussed 
in Chapter 3.
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5C H A P T E R  

DNS of Compressible Flows

In the previous chapter, sample DNS results of incompressible chan-
nel flows were presented, with discussions given on the numerical fea-

tures of the methods used in the simulations. In contrast to incompressible 
flows, which are of relatively low speeds, compressible flows represent a 
broad range of fluid flows with relatively high speeds, ranging from low 
compressible subsonic flows with Mach numbers slightly higher than 0.3, 
to highly compressible hypersonic flows with Mach numbers exceeding 5. 
Compressible flows have many applications, especially in aerospace engi-
neering. DNS provides a very powerful tool to investigate compressible 
flows and to gain insight into the fundamentals of the flow, turbulence, and 
mixing processes at high speeds. An enhanced understanding obtained by 
DNS can help many practical applications in different ways, including the 
development of effective flow control techniques for aeronautics and astro-
nautics. DNS results can be effectively utilized to interpret available experi-
mental data, to guide experimental work, and to execute calculations for 
operating conditions that are not achievable using experimental methods. 
In many applications of compressible flows, DNS can provide results that 
are not possible or are difficult to obtain using experimental and/or analyti-
cal methods and other computational methods.

Compressible flows are generally high-speed gas flows and the pivotal 
aspect of high-speed flows is that the density is variable. In addition to 
variable density, another pivotal aspect of high-speed compressible flow 
is energy. The energy of a given molecule is the sum of its transitional, 
rotational, vibrational, and electronic energies. For compressible flows, the 
most useful quantity to represent energy is the internal energy, which is 
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defined as the sum of the energies of all the molecules in a finite volume of 
gas consisting of a large number of molecules. The internal energy per unit 
mass of gas is defined as the specific internal energy, denoted by  A high-
speed flow is a high-energy flow. When the flow velocity is increased, some 
of the kinetic energy is lost and reappears as an increase in internal energy, 
hence increasing the temperature of the gas. Therefore, in a high-speed 
flow, energy transformations and temperature changes are important con-
siderations, whether the flow is reacting with combustion heat release or 
nonreacting without combustion heat release. In contrast to compressible 
flows, the energy equation for incompressible flows is important only to 
heat transfer problems or reacting flows such as combustion applications.

The considerations of energy for compressible flows come under the 
science of thermodynamics. In thermodynamics, another variable used 
to represent energy is enthalpy , apart from internal energy , which can 
be defined as     , where  is thermal dynamic pressure, and  is 
the specific volume or the volume per unit mass. For compressible flows, 
the thermodynamic properties of the gas are of great importance where 
the fluid can be very often assumed as a perfect gas—a gas in which the 
intermolecular forces are neglected. For a perfect gas, the equation of state 
is , or    (where  is the gas constant and  is temperature). 
For a perfect gas, it can be readily shown that , /( )1
and /( ),1  where /  is the ratio of specific heats at constant 
pressure and volume. For a perfect gas,  and  are functions of tempera-
ture only:    ,    . A perfect gas where  and  are constants 
is defined as a calorically perfect gas: , . Note that  and  
are thermodynamic state variables and have nothing to do with the fluid 
dynamic process that may be taking place. These thermodynamic equa-
tions are frequently involved in the numerical solution of a compressible 
flow field, as auxiliary equations to the fundamental fluid dynamic gov-
erning equations given in Chapter 1.

The most convenient index to gage whether a fluid flow must be consid-
ered as compressible is the Mach number, defined as the ratio of the local 
velocity to the local speed of sound. The physical mechanism of sound 
propagation in a gas medium is based on molecular motion (by molec-
ular collisions). Common experience tells us that sound travels through 
air at some finite velocity. The speed of sound in a calorically perfect gas  
(a perfect gas where  and  are constants) is given by / . 
Mach number can also be used to define different regimes of com-
pressible flows: (1) subsonic flow: 0 8. ; (2) transonic flow with  
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1 : 0 8 1. ; (3) transonic flow with 1 : 1 1 2. ;  
(4) supersonic flow: 1 2. ; and (5) hypersonic flow: 5. For practi-
cal applications, a compressible flow field normally covers several regimes 
with different speeds. As the flow changes from subsonic to supersonic, the 
complete nature of the flow changes, not the least of which is the occur-
rence of shock waves. The formation of shock waves is associated with two 
physical conditions: a supersonic freestream velocity and the presence of 
an obstacle in the flow field such as a solid body. In practical applications, 
there is always the presence of solid bodies in the flow field such as wings 
or fuselage of the aircraft, vessels in aircraft engines, diffusers and noz-
zles, and the ground effect. In a fluid flow environment, the disturbances 
generated due to the presence of the solid body are propagated upstream 
via molecular collisions at approximately the speed of sound. At super-
sonic speeds, the flow moves faster than the speed of sound; therefore, 
disturbances cannot eventually work their way upstream. Instead, they 
coalesce, forming a standing wave that is the shock wave. A shock wave is 
an extremely thin region, typically on the order of 10 5 cm, across which 
the flow properties can change drastically. The flow across a shock wave 
may be regarded as adiabatic (no heating or cooling). Across a shock 
wave in the streamwise direction, the pressure, density, temperature, 
and entropy increase; the Mach number, flow velocity, and total pressure 
decrease; and only the total enthalpy stays the same. Physically, a shock 
wave is a very thin region across which some large changes in fluid proper-
ties occur almost discontinuously, and within the shock wave itself, large 
gradients in velocity and temperature occur; that is, the mechanisms of 
friction and thermal conduction are strong. These are dissipative, irre-
versible mechanisms that always increase the entropy. Unlike the sound 
wave, the flow through the shock wave is nonisentropic. The shock wave 
is referred to as a normal shock wave if it stands in a direction normal to 
the streamwise direction. In general, a shock wave makes an oblique angle 
with respect to the upstream flow since the surface of the solid body does 
not always present in a direction normal to the streamwise velocity. In 
such an oblique shock wave, the pressure also increases discontinuously 
across the wave. The oblique shock waves are inherently multidimensional 
in nature, involving sharp gradients. Apart from shock waves, super-
sonic flows are also characterized by expansion waves, where the pressure 
decreases continuously across the wave. Oblique shock waves occur when 
a supersonic flow is turned into itself. In contrast, when a supersonic flow 
is turned away from itself, an expansion wave is formed. For supersonic 
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compressible flows, both external flows such as the flow around a finite 
wing or a jet flow in an open boundary domain and internal flows such as 
the flow through nozzles, diffusers, and wind tunnels can develop com-
plex shock and expansion wave structures.

DNS of compressible supersonic flows involving shock waves are very 
challenging for numerical simulations because the numerical methods 
have to fully resolve the sharp gradients in the flow regions involving shock 
waves, which is very often impossible due to the prohibitive computational 
costs. In the general CFD area, many efforts have been devoted to develop-
ing approximate methods for flow regions involving shock waves in order 
to obtain a reasonable representation of the overall flow field rather than 
a detailed solution of the shock waves. In fact, the detailed shock wave 
structures are very often neglected. Many computational methods have 
been developed for the solution of compressible flows involving shock 
waves, such as the shock-fitting method and shock-capturing methods. 
In these efforts, the governing equations solved are the inviscid govern-
ing equations—the hyperbolic Euler equation described in Chapter 1,  
where the viscous effects are neglected. In general CFD for compress-
ible flows using the shock-fitting method, shock waves are explicitly 
introduced in the solution using appropriate shock relations such as the 
Rankine-Hugoniot relations. The shock-fitting method is an elaborate 
method based on the analytical solutions of shock waves, which is in 
contrast to the shock-capturing method. The shock-capturing approach 
represents a class of techniques for computing inviscid flows with shock 
waves in which the governing equations of inviscid flows are cast into 
the conservation form and any shock waves or discontinuities are com-
puted as part of the solution. In such an approach, no special treatment 
is employed to take care of the shocks themselves. In concept, the shock-
capturing methods are relatively simple compared to the more elaborate 
shock-fitting methods. However, the shock waves predicted by shock-
capturing methods are generally not sharp and smear over several grid 
points. Also, classical shock-capturing methods have the disadvantage 
that unphysical oscillations may develop in the vicinity of strong shocks. 
In traditional CFD for compressible flows, symmetric or central schemes 
that are normally of second-order accuracy are used and do not consider 
any information about wave propagation in the discretization. In order 
to avoid numerical oscillations in the shock regions, artificial viscos-
ity may be added onto the discretized Euler equations. In the classical 
shock-capturing methods, numerical dissipation terms are usually linear 



DNS of Compressible Flows n 107

and the same amount is uniformly applied at all grid points. These clas-
sical shock-capturing methods exhibit accurate results only in the case 
of smooth and weak-shock solution; but when strong shock waves are 
present in the solution, nonlinear instabilities and oscillations can arise 
across discontinuities. Apparently, these methods are not robust enough. 
In contrast to these classical methods, modern shock-capturing methods 
are generally upwind based, where the differencing schemes attempt to 
discretize the hyperbolic partial differential equations by using differenc-
ing biased in the direction determined by the sign of the characteristic 
speeds. No matter what type of shock-capturing scheme is used, a stable 
calculation for flows with the presence of shock waves requires a cer-
tain amount of numerical dissipation in order to avoid the formation of 
unphysical numerical oscillations. In modern shock-capturing methods, 
a nonlinear numerical dissipation is added, with an automatic feedback 
mechanism that adjusts the amount of dissipation in any cell or at any 
grid point of the mesh, in accord with the gradients in the solution. These 
schemes have proven to be stable and accurate even for problems contain-
ing strong shock waves. Some of the well-known classical shock-capturing 
methods include the MacCormack method, Lax–Wendroff method, and 
Beam–Warming method, as described by Anderson (2004) and Hirsch 
(2007). Examples of modern shock-capturing schemes include the widely 
used total variation diminishing (TVD) schemes first proposed by Harten 
(1983), the flux-corrected transport scheme introduced by Boris and Book 
(1976), the monotonic upstream-centered schemes for conservation laws 
(MUSCL) based on the Godunov approach and introduced by van Leer 
(1979), the approximate Riemann solvers proposed by Roe (1981), the vari-
ous essentially nonoscillatory (ENO) schemes proposed by Harten et al. 
(1987) and discussed also by Shu and Osher (1988), and the piecewise par-
abolic method (PPM) proposed by Colella and Woodward (1984). These 
shock-capturing methods have been proved effective, but the numerical 
accuracy at locations near the shock waves inevitably decays.

As far as DNS of compressible flows is concerned, strictly speaking, 
the inviscid Euler equations are not so relevant, due to the fact that these 
equations neglect the dissipative effects, which are the most important 
characteristic of small-scale turbulence. The Kolmogorov microscales, 
which in principle should be resolved in DNS, are decided by the viscous 
dissipation effects. In DNS, the viscous effects should always be consid-
ered. In traditional CFD for high-speed compressible flows, the simula-
tions were predominately carried out for inviscid flows, which cannot be 
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regarded as DNS although high-order numerical schemes might have been 
used. To date, the applications of DNS to compressible flows have been 
mainly restricted to subsonic flows with relatively low speeds, due to the 
prohibitive costs of the computations at higher flow speeds. This chapter is 
restricted to simulations of subsonic flows, where the formation of shock 
waves is not prevalent. The governing equations used are the compressible 
Navier–Stokes equations with the viscous terms, instead of the hyperbolic 
systems that are frequently employed in traditional CFD for high-speed 
compressible flows.

In the context of DNS of subsonic compressible flows, one example is 
DNS of jet flows, which are of great importance to many practical appli-
cations such as propulsion and noise generation. As a class of free shear 
layer flow, jets are also of great importance to fundamental fluid dynamics 
research. Over the last two decades, there has been a large amount of DNS 
of compressible jet flows. This chapter presents a few applications of DNS 
to compressible jet flows with some sample results of DNS of both nonre-
acting and reacting jet flows. Simulation results for both round jets and 
noncircular jets are presented. Techniques for DNS data postprocessing 
such as the proper orthogonal decomposition (POD) techniques are also 
discussed. Finally, discussions on the numerical features of the simula-
tions are presented.

I. SAMPLE RESULTS: DNS OF COMPRESSIBLE JET FLOWS
A. DNS of a Compressible Plane Jet (Reichert and Biringen 2007)

Compressible jet flows such as flows established on nozzles have important 
engineering applications. The compressible plane jet issuing into a parallel 
stream is a flow analogous to exhaust from a rectangular nozzle of high 
aspect ratio of an aircraft engine in forward motion. The study of Reichert 
and Biringen (2007) involved an unconfined plane jet in a coflowing stream 
with hyperbolic tangent shear layer profiles at the inflow. In their simu-
lations, the instability was triggered using random perturbations at the 
inflow. A spatial compact finite difference scheme with Runge–Kutta time 
advancement was utilized for the integration of the governing equations. 
The nonreflecting characteristic boundary conditions were employed at 
the side boundaries. Figure 5.1 shows the computational geometry and 
coordinate system. Both two-dimensional and fully three-dimensional 
simulations have been performed.
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Figure 5.2 shows the instantaneous spanwise vorticity contours from 
the two-dimensional simulations at various Mach numbers. The first nota-
ble feature is the large degree of organization visible in the far downstream 
region. Large-scale vortical structures develop, while an increase in Mach 
number lengthens the jet potential core with the shear layers becoming 
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FIGURE 5.1 Computational geometry and coordinate system: DNS of a 
compressible plane jet. (Reichert and Biringen 2007; with permission from 
Elsevier Science Ltd.)

Mc = 0.05

Mc = 0.21

Mc = 0.4

Mc = 0.6

FIGURE 5.2 Instantaneous spanwise vorticity contours at different Mach 
number from the two-dimensional simulations: DNS of a compressible 
plane jet. (Reichert and Biringen 2007; with permission from Elsevier 
Science Ltd.)
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wavy. Roll-up and pairing of the vortical structures occur further down-
stream. The downstream cross-streamwise spreading of the jet is reduced 
with increasing Mach number. The highest Mach number case exhibits 
more stable vortex streets leading to less pairing and decreased spreading, 
suggesting less mixing with increased compressibility. In order to examine 
the three-dimensional effect, Figure 5.3 shows the instantaneous vorticity 
distributions from the three-dimensional simulations for   0.4 and 

  0.7. The instantaneous vorticity visualizations of Figure 5.3, with 
lighter regions indicating higher vorticity, reveal several key points. In the 
upstream region, the -cuts in Figure 5.3 resemble the two-dimensional 
vorticity plots of Figure 5.2. The shear layers become wavy and then roll 
up into discrete vortices. The antisymmetric mode clearly dominates the 
initial vortex street, as evidenced by the spatially staggered trains of vor-
tex cores. In addition, there is some indication of vortex pairing and the 
associated increase in length scales. However, the similarities end in the 
downstream region. Whereas the two-dimensional simulations predict 
multiple downstream amalgamations into strong vortices, the three-di-
mensional calculations display a rapid breakdown to smaller, less orga-
nized motions.

It is worth noting that in the simulations performed by Reichert and 
Biringen (2007), the Euler equations, which express conservation of 
mass, momentum, and energy for the inviscid motion of compressible 
fluids, were employed. As mentioned before, the simulations may not be 

(a) Ma = 0.4

(b) Ma = 0.7

FIGURE 5.3 Instantaneous vorticity magnitude visualizations in the -
plane from the three-dimensional simulations: DNS of a compressible 
plane jet. (Reichert and Biringen 2007; with permission from Elsevier 
Science Ltd.)
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regarded as “DNS” if viscous effects were ignored since the Kolmogorov 
microscales are defined based upon viscous effects. In principle, the 
grid resolution used in DNS should be smaller than the smallest scale 
in the flow field, the Kolmogorov length scale, for it to be resolved. To 
capture the smallest scales in the flow field is a very stringent require-
ment for a numerical simulation, and is always difficult to satisfy due to 
the prohibitively large number of grid points needed. Nevertheless, the 
terminology of “DNS” has been broadly used (or misused) in modern 
CFD literature without strictly following the definition of resolving all 
the relevant time and length scales. This may not satisfy a purist; how-
ever, one could argue that this terminology is not clear-cut, since very 
often the smallest scale, or the Kolmogorov microscale, is not a known 
quantity for a practical simulation. Of course it may be known from 
experiments or another simulation, or it may be estimated based on the 
amount of fluctuation observed in the simulation results. It would be 
more appropriate to examine the numerical credibility of the simulation 
rather than the accuracy of the usage of the terminology. In addition, 
two-dimensional simulations were performed by Reichert and Biringen 
(2007), which ideally should not be regarded as “DNS” due the lack of 
three-dimensional vortex stretching and interaction. Physically, there 
is no such thing as two-dimensional turbulence, albeit with the fact 
that there are many simulations performed in the reduced dimensions 
to reduce the computational costs. From a personal point of view, the 
authors tend to accept that a simulation may be regarded as DNS-like 
if the following conditions are satisfied: (1) the time-dependent, three- 
dimensional governing equations based on mass, momentum, and energy 
conservations are solved without modeling (or approximation) the fluid 
motion, or, in other words, a turbulence model is not used; instead, any 
turbulence present in the flow field should be a natural consequence of 
the numerical solution; and (2) the numerical solutions should be suf-
ficiently accurate without appreciable errors from the numerical solvers, 
including the numerical schemes and boundary conditions used. The 
numerical schemes should be free of dissipation and dispersion errors, 
or at least have only a minimal amount of these errors. To achieve this, 
highly accurate numerical methods such as spectral methods or high-
order schemes should always be used. Furthermore, boundary condi-
tions need to be able to represent the physical conditions as faithfully 
as possible, while not introducing any numerical inaccuracy into the 
numerical solution inside the computational domain.
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B. DNS of a Variable-Density Round Jet (Nichols et al. 2007)

Fully three-dimensional DNS of variable-density round jets with and 
without gravity was performed by Nichols et al. (2007). The compress-
ible time-dependent Navier–Stokes equations were solved in cylindrical 
coordinates on a staggered grid. Sixth-order compact finite difference 
schemes were used to compute the spatial derivatives. A third-order 
Adams–Bashforth time-differencing scheme was used to advance the 
advection and diffusion terms in the momentum and energy equations. 
An asymptotic method was employed to treat the centerline singularities 
at   0. Viscous, traction-free, open-boundary conditions were applied at 
the cross-streamwise and outflow boundaries. At the outflow, a free-slip 
collar was also used, which is very similar to the sponge layer used by 
other researchers such as Jiang and Luo (2000), to control the wave reflec-
tions from outside the computational domain.

Figures 5.4 and 5.5 show the time development of the jet from initial 
conditions for two different Froude numbers (dimensionless parameters 
comparing inertial and gravitational forces): (the nonbuoyant 
case) and   8.0 (the buoyant case). Each successive image is separated 
from the previous one by a nondimensional time of 12. In both cases, the 
flow initially adjusts to become nonparallel. By nondimensional time   
48 shown in Figures 5.4(e) and 5.5(e), however, the initial adjustment has 
left the computational domain. In the final images of both sequences, 
it can be observed that the laminar inflow at the bottom of the domain 
enters first into an oscillatory state that is dominated by a train of 
Kelvin–Helmholtz type vortices convecting downstream along the shear 
layer. In the case of the nonbuoyant jet, long, axially aligned streak-like 
structures are observed to develop in Figures 5.4(e)–(g). These structures 
are sometimes referred to as side jets because they form by jet fluid being 
ejected from the jet center in a star-shaped pattern. Side-jet formation is 
markedly absent in the case of the buoyant jet, the results of which show 
that the transition to the quasi-turbulent flow observed at the top of the 
domain is much more abrupt in the case of the buoyant jet.

C. DNS of a Transitional Rectangular Jet (Rembold et al. 2002)

Jets established on noncircular nozzles such as rectangular jets provide 
an effective passive flow control means in many applications due to the 
enhanced mixing in comparison with round jets. DNS of a Mach 0.5 jet 
exiting from a rectangular-shaped nozzle with an aspect ratio of 5 into 
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a quiescent ambient was performed by Rembold et al. (2002). The three-
dimensional compressible Navier–Stokes equations were solved on a 
Cartesian grid. Spatial discretization was achieved by using a fifth-order 
compact upwind-biased scheme for the convective terms and a sixth-
order compact central scheme for the diffusive terms. Time-integration 
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FIGURE 5.4 Time series of the jet evolution without gravity ( ) : DNS 
of a variable-density round jet. (Nichols et al. 2007; with permission from 
Cambridge University Press.)
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was performed with a third-order low-storage Runge–Kutta scheme. The 
nonreflecting characteristic boundary conditions were applied at the side 
boundaries. A sponge layer was employed at both the inflow and outflow 
boundaries to prevent spurious wave reflections. At the inlet, Dirichlet 
conditions were used.
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FIGURE 5.5 Time series of the jet evolution without gravity ( . ) :8 0  
DNS of a variable-density round jet. (Nichols et al. 2007; with permission 
from Cambridge University Press.)
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In Figure 5.6, the instantaneous flow topology of the transition pro-
cess is visualized by a snapshot of the density isosurface. A strong growth 
of the linear instability mode in the laminar region is observed. Rapidly 
three-dimensional disturbances of the initially two-dimensional instabil-
ity mode grow at the lateral edges of the jet. A symmetric vortex structure 
develops but breaks up almost immediately into small-scale turbulence. 
Figure 5.7 shows a close-up of a pressure isosurface in the transition 
region. Vortices symmetric to the -  plane can be identified that deform 
and finally break up into disordered structures. Additionally, Figure 5.8 

y
x

z

FIGURE 5.6 Snapshot of density isosurface: DNS of a transitional rect-
angular jet. (Rembold et al. 2002; with permission from Elsevier Science 
Ltd.)
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FIGURE 5.7 Snapshot of pressure isosurface in the transition region. 
(a) Side view and (b) top view, f low from left to right: DNS of a tran-
sitional rectangular jet. (Rembold et al. 2002; with permission from 
Elsevier Science Ltd.)
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displays density plots in two cross-sections through the jet center. The flow 
shows a tendency of “axis-switching,” which is a typical fluid dynamic 
behavior of rectangular jets. The excited varicose mode develops toward 
the antisymmetric sinuous mode, which is followed by a rapid transition 
to turbulence. The observed flow structure and transition location are the 
result of the imposed inflow disturbances and the spatial development of 
the flow instabilities.

D. DNS of a Swirling Annular Jet Flame

As an example of applications of DNS to compressible reacting flows, 
some sample results of a swirling annular nonpremixed flame obtained 
from the author’s group at Brunel University are presented here. Swirling 
flows are encountered in applications such as engines, turbine combustors, 
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FIGURE 5.8 Snapshot of density contours along the (a) major and 
(b) minor axis of the jet at the same instant: DNS of a transitional 
rectangular jet. (Rembold et al. 2002; with permission from Elsevier 
Science Ltd.)
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furnaces, and boilers. Swirling motion is regarded as an efficient way to 
stabilize nonpremixed flames and has been used together with bluff-body 
stabilization. In such a configuration, a large vortex with flow reversal may 
be formed in the core region, which carries the combustion products back 
toward the burner mouth, providing a continuous and stable source of 
energy for flame ignition. In addition, swirl extends the curved shear layer 
and produces extra shear promoting turbulence generation that enhances 
mixing and combustion intensity. In many practical applications, it is 
preferable to have relatively strong swirl so that there is a formation of 
pronounced coherent structures involving both axisymmetric and azi-
muthal vorticity. In combustion applications, coherent vortical structures 
play an important role as they influence mixing of heat and species to a 
large extent and hence the entire reaction process. It is difficult to study 
swirling flows using the traditional Reynolds-averaged methods due to 
the existence of unsteady coherent structures and the effects of mean flow 
streamline curvature (Jakirlić et al. 2002). Recently there has been a sub-
stantial amount of LES on swirling flames (e.g., Duwig and Fuchs 2005; 
Grinstein and Fureby 2005; Sankaran and Menon 2002; Selle et al. 2006; 
and Stein et al. 2007; to name but a few). In most of these studies, the 
swirling flame was established on a round nozzle. For flows established 
on a round nozzle, there is a circular velocity shear layer near the nozzle 
exit where the flow instability may develop into vortical structures and 
turbulence downstream. Different from a round nozzle, an annular nozzle 
has two adjacent velocity shear layers, which may enhance the turbulence 
levels within a flame and improve mixing and combustion and reduce 
pollutant emissions.

Flames in annular configurations are used in industrial and domestic 
burners such as cooking flames. For an annular jet, the fluid dynamics is 
largely determined by the interaction of two adjacent circular shear layers 
(Patte-Rouland et al. 2001), which is significantly different from that of a 
round jet with one such shear layer. The prominent features of annular jet 
flames include the formation of a recirculation zone inside the jet core near 
the nozzle exit, which not only enhances the fuel/air mixing, but also sta-
bilizes the flame. Vanoverberghe et al. (2003) experimentally investigated 
a swirl-stabilized partially premixed combustion in an annular configura-
tion in a confined environment, where different flame states were observed. 
On the computational side, large-eddy simulation has been used to simulate 
annular nonreacting swirling jets (e.g., García-Villalba and Fröhlich 2006; 
García-Villalba et al. 2006). The LES captured the precessing vortex cores 
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(PVC), which are the inner structures in swirling jets, featuring the vortex 
core rotating and vortex spinning. However, LES or DNS of reacting flows 
such as flames in annular configurations has not been available.

Another important topic in combustion research is near-wall combus-
tion, which deserves more research efforts from both application and fun-
damental points of view. In this context, the study of impinging jet flames 
is of particular interest. In addition to the relevance to many engineering 
applications such as industrial burners, metal cutting, glass shaping, and 
glass melting for fiber optics production, impinging jet flames are also of 
great value in fundamental academic studies. The impinging flow con-
figuration is of simple geometry but covers a broad range of important 
flow phenomena, such as large- and small-scale structures, wall boundary 
layers with stagnation, large curvature involving strong shear and nor-
mal stresses, and wall heat transfer. Impinging flames involve the complex 
interactions between the wall and the flame. In a turbulent scenario, the 
flame/wall/turbulence multiway interactions bring many unresolved and 
challenging issues to combustion modeling (Poinsot and Veynante 2001). 
In general, near-wall flow and heat transfer in reacting flows are not well 
investigated. For instance, the classical law-of-the-wall models of fluid 
flow and heat transfer neglected the presence of flame and variable density 
effects, which should be taken into account for combustion applications 
(Jiang et al. 2007). Due to the rich flow phenomena involved and the geo-
metric simplicity, the impinging flame is ideal for development and vali-
dation of near-wall models. The impinging flow contains a broad range 
of length scales, ranging from the large-scale vortical structure to very 
thin thermal boundary layers near the wall. The near-wall flow and com-
bustion processes are also highly unsteady. A detailed study of impinging 
flames requires both temporally and spatially resolved solutions, and DNS 
provides such a possibility.

In the study carried out at Brunel University, the dynamics of annu-
lar swirling nonpremixed jet flames has been investigated by performing 
3D parallel DNS. Highly accurate numerical methods and high-fidelity 
boundary conditions have been used in the DNS. The swirling motion 
was introduced into the annular fuel jet itself. In such a configuration, the 
burner surface area inside the jet annulus provides bluff-body stabiliza-
tion for the nonpremixed flame. In order to examine the swirling effects 
on the flow and flame dynamics, two cases have been performed, includ-
ing one case without swirl and another case with swirl number 0.4. In 
both cases, a wall at the ambient temperature is present at the downstream 
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location. The physical problem considered was a fuel jet from an annular 
nozzle issuing into an open boundary domain with downstream wall con-
finement and a swirl applied onto the fuel stream. Combustion took place 
when the fuel mixed with the oxidant environment. The computational 
domain was the region between the jet nozzle exit plane and the down-
stream impinging wall, which is open to the ambient environment in the 
cross-streamwise directions.

The mathematical formulation included the governing equations, 
numerical methods for discretization, and solution and boundary con-
ditions. The flow was described with the compressible time-dependent 
Navier–Stokes equations in the Cartesian coordinate system ( , , ), 
where the  axis is along the streamwise direction of the fuel jet and 
the   0   plane is the domain inlet where the jet nozzle exit locates. 
The nondimensional form of the governing equations was employed 
(Jiang and Luo 2003). Major reference quantities used in the normaliza-
tion were the maximum streamwise mean velocity at the jet nozzle exit 
(domain inlet), nozzle diameter (measured from the middle points of 
the annulus), and the ambient temperature, density, and viscosity. Since 
this study was focused on the investigation of the fluid dynamic behav-
ior of the flame, a simple chemistry  with finite-
rate Arrhenius kinetics was considered to be adequate, where  and  
represent the chemical symbol and stoichiometric coefficient for species 
, respectively. The reaction rate, after normalization, takes the form of 

( / ) ( / ) exp[ ( / / )1 1 ]], where  and  rep-
resent species molecular weight and mass fraction, and , , and  
stand for the Damköhler number, Zeldovich number, and flame tempera-
ture, respectively. The heat release rate in the energy equation was given 
by , with  representing heat of combustion. The governing 
equations were supplemented by the ideal-gas law for the mixture. The 
equations were solved using a sixth-order accurate compact finite dif-
ference scheme for evaluation of the spatial derivatives (Lele 1992). The 
finite difference scheme allows flexibility in the specification of bound-
ary conditions for minimal loss of accuracy relative to spectral methods. 
The time-dependent governing equations were integrated forward in time 
using a fully explicit low-storage third-order Runge–Kutta scheme.

Boundary conditions for the 3D spatial DNS of annular jet flames rep-
resent a challenging problem. Physical conditions at the nozzle exit must 
be appropriately represented. In the meantime, open boundary condi-
tions in the jet cross-streamwise direction should allow jet mixing with 
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the ambient and entrainment. The Navier–Stokes characteristic boundary 
condition (NSCBC) by Poinsot and Lele (1992) was utilized. For the nozzle 
exit (domain inlet), the NSCBC was used to specify the inflow bound-
ary with density treated as a “soft” variable that fluctuated slightly in the 
simulations according to the characteristic waves at the boundary. To 
specify accurately the swirl number in a numerical simulation is a deli-
cate issue. Based on the assumption of the equilibrium swirling inflow, 
analytical solution was derived for the mean velocity profiles (Jiang et al. 
2008), including the mean streamwise velocity  and the mean azimuthal 
velocity :
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In Equations (5.1)–(5.2), 2 2  is the radial distance, and  and  
are the inner and outer radii of the annular jet, respectively. In Equations 
(5.1)–(5.2),  and  can be defined by the maximum velocities at the 
inflow boundary. For a unit maximum velocity, which is often the case 
when a nondimensional form of the governing equations is employed, the 
constant  is defined as
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The parameter defines the degree of swirl. For known and , the 
swirl number can be calculated from
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2

 

(5.4)
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A certain swirl number can be conveniently achieved by adjusting the 
constant  in Equation (5.2) for . From the azimuthal velocity , the 
cross-streamwise velocity components at the inflow can be specified by 

/  and / . The inlet velocity profiles have been perturbed 
by two small helical disturbances (Uchiyama 2004). The velocity compo-
nents at the nozzle exit   0 were given as

 
sin( )2 0

 
(5.5)

 
sin( )2 0

 
(5.6)

 
sin( )2 0

 
(5.7)

In Equations (5.5)–(5.7),  stands for the amplitude of disturbance, which 
was specified as 1  of the maximum value of streamwise mean velocity 

,  stands for the mode number, and  stands for the azimuthal angle. 
In the simulations performed, two helical modes of   1 and   1 were 
superimposed on the temporal disturbance. The nondimensional frequency 
of the unsteady excitation was 0  0.30, which was chosen to be the unstable 
mode leading to the jet preferred mode of instability. The fuel temperature 
at the inlet was chosen to ensure auto-ignition of the mixture.

Numerical results have been obtained for two computational cases with 
and without swirling. For the swirling case, the velocity of the fuel jet at 
the nozzle exit was specified with a swirl number of 0.4. In both cases, 
a downstream wall confinement was introduced into the computational 
domain. The considered jet Mach number was   0.4, and the Reynolds 
and Prandtl numbers used were Re  2500 and Pr  1. The ratio of spe-
cific heats used was 1 4. . The dynamic viscosity was chosen to be tem-
perature dependent according to ( / ) ..0 76 Parameters used in the 
one-step chemistry were Damköhler number   6, Zeldovich num-
ber   12, flame temperature  = 6, and heat of combustion   150. 
These values were chosen to give temperatures of a reacting flow typically 
encountered in many nonpremixed flames. The dimensions of the compu-
tational box used were       6.0. A grid system with 256  256  
256 nodes was used with uniform distribution. A grid independence test 
was performed and further refinement of the grid by doubling the points 



122 n Numerical Techniques for Direct and Large-Eddy Simulations

in each direction did not lead to appreciable changes in the solution. The 
time step was limited by the Courant–Friedrichs–Lewy condition for sta-
bility and a chemical restraint (Jiang and Luo 2003). The results obtained 
were considered to be grid and time-step independent. In the following, 
instantaneous results of the flow and combustion fields are presented and 
discussed first, followed by a proper orthogonal decomposition (POD) 
analysis of the instantaneous velocity field, and finally time-averaged 
results are presented and discussed.

Figure 5.9 shows the instantaneous reaction rate contours in the 
streamwise and cross-streamwise sections at   30 after the flame has 
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FIGURE 5.9 Instantaneous reaction rate contours in the streamwise and 
cross-streamwise sections at   30. 
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been developed, for the cases without swirl and with swirl number 0.4. 
The cross-sectional locations of   3 and   3 are in the middle of the 3D 
domain. The results indicate that the annular nonpremixed flame develops 
complex dynamical structures. It is noticed that there is a flame located 
very close to the burner surface, inside the fuel annulus. This flame near 
the burner mouth can stabilize the combustion by providing a continuous 
and stable source of energy for ignition. The annular reacting flow also 
developed unsteady vortical structures, which are evident in the wrinkled 
flame structures in the jet columns. The vortical structures are caused by 
the Kelvin–Helmholtz type shear layer instability, which can play a sig-
nificant role in the mixing and entrainment. In Figure 5.9, it is observed 
that, under the swirling condition, the flame becomes shorter but with 
larger spreading in the middle of the domain. Swirl extends the curved 
shear layer and promotes mixing and combustion; therefore, the flame 
becomes shorter and spreads more. In both the swirling and nonswirling 
cases, the flame touches the downstream wall boundary and quenches at 
the wall surface.

The annular jet flames develop into complex flow fields, as shown in the 
instantaneous velocity vectors in Figure 5.10. Under swirling conditions, 
the formation of the swirl-induced PVC can alter the flow pattern of the 
jet flame. For the nonswirling case, the flow field has a complex structure 
due to the development of the shear layer instability triggered by the heli-
cal modes in the small external perturbation applied at the nozzle exit. For 
the swirling case, an anti-clockwise flow motion can be observed near the 
center of the jet where the PVC locates. This anti-clockwise flow motion is 
caused by the external swirl at the nozzle exit. Around the rotating core, 
there are a few relatively weak structures associated with the helical modes. 
In Figure 5.10(d), it can be noticed that the center of the anti-clockwise 
flow motion is not exactly located at the geometrical center (   3,   3) in 
the plane of   3, but it is roughly located at the geometrical center in the 
upstream plane of   1. The flow field of the swirling case indicates the 
existence of PVC, featuring the vortex core rotating associated with swirl. 
In both the swirling and nonswirling cases, at the downstream wall loca-
tion of   6, the flow touches the impinging wall with the formation of a 
stagnation zone in the impinging region and wall jets in the surrounding 
areas, which are more evident in the nonswirling case.

In order to further examine the effect of the interaction between the 
unsteady vortical structures and the PVC associated with swirl,  numerical 
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FIGURE 5.10 Instantaneous vector fields in the streamwise and cross-
streamwise sections at   30.
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tests were carried out. Figure 5.11 shows the time traces of the temperature 
and streamwise velocity component at a fixed point (   3,   3,   3), 
which is the center of the computational domain, and the correspond-
ing Fourier spectra are shown in Figure 5.12. It is clear that the two cases 
behave quite differently. For the nonswirling case, both the temperature 
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and streamwise velocity vary periodically, indicating that the flow field is 
dominated by the jet preferred mode of instability; the swirling case does 
not show similar behavior. Without swirl, the annular jet flow field is dom-
inated by the unsteady vortical structures due to the Kelvin–Helmholtz 
instability. This instability is due to the existence of the two adjacent shear 
layers, which leads to the formation of vortical structures in the annular jet 
columns. Under swirling conditions, the vortical structures in the jet col-
umns interact with the rotating inner structure. The presence of PVC in the 
swirling case changes the dynamics of the annular jet flame significantly. In 
Figure 5.11(a), it is observed that the temperature at (   3,   3,   3) of 
the swirling case increases with time, while that of the nonswirling case is 
statistically more stable. In Figure 5.11(b), it can be seen that the streamwise 
velocity at (   3,   3,   3) of the swirling case is close to a zero value, 
indicating a stationary flow field. With the presence of chemical reaction 
and combustion heat release at this location as indicated in Figure 5.9, the 
temperature shows an increasing trend that has not been stabilized for the 
time period shown because the heat has not been effectively removed. It 
is also noticed in Figure 5.11(b) that the velocity shows a slowly declining 
trend from zero value to negative values, which will bring the hot combus-
tion product backward and thus will eventually stabilize the temperature.

An important feature in Figure 5.11 is that the reacting flow field 
without swirl at (   3,   3,   3) is showing some sort of periodicity, 
while the flow periodicity is almost diminishing for the swirling case and 
the flow temperature is still changing significantly. The Fourier spectra 
shown in Figure 5.12 can further clarify this. In Figure 5.12(a) for the 
temperature, it can be seen that there are a few important frequencies in 
the lower frequency range in the nonswirling case, but the frequency of 
the excitation 0  0.30 (nondimensional frequency  Strouhal number) 
is not particularly important. For the swirling case, the flow does not 
have important nonzero frequencies because the flow does not develop 
significant periodic behavior at (   3,   3,   3). This is due to the fact 
that this location is within the inner structure of the swirl-induced large 
PVC characterized by rotating motions in the cross-streamwise direction 
and flow reversals in the streamwise direction, which does change sig-
nificantly with time at this location. In Figure 5.12(b) for the streamwise 
velocity, two important frequencies have been observed: 0.18 and 0.60, 
where 0.60 is twice the frequency of the excitation. The development of 
the frequency 0.60 is mainly associated with the fact that two helical 
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modes were superimposed, which not only broke the flow symmetry but 
also led to the development of the first super-harmonic frequency in the 
flow. For the swirling case, the flow velocity does not develop significant 
periodic behavior at (   3,   3,   3). The dynamic vortical struc-
tures in the annular jet columns interact with the inner structure of the 
swirl-induced large PVC, with the flow more or less stationary at the 
center of the domain. Unlike the dynamical vortical structures due to 
the Kelvin–Helmholtz type shear layer instability, the inner structure of 
the PVC does not respond to the flow instability supplied at the domain 
inlet; therefore, the flow periodicity is diminishing.

Fourier transformation is based on one-point history data and there is 
no correlation with neighboring points. Therefore, it may not reflect accu-
rately the dynamics of the flow. To overcome this weakness, a POD analy-
sis was performed for the history data of the flow field. As a powerful tool 
to investigate the mode effects in vortical flow fields and turbulence, POD 
can be used to analyze the flow data generated by DNS. The principle of 
POD is the decomposition of the flow field into a weighted linear sum of 
orthogonal eigenfunctions. The coherent structures in the flow field are 
described by the eigenfunctions of the two-point correlation tensor. The 
POD hypothesis is that different types of coherent motion that may occur 
within the flow will give rise to different POD eigenfunctions. The larg-
est eigenvalue corresponds to the structure with most energy (Gunes and 
Rist 2004; 2007). The method of snapshots as described by Holmes et al. 
(1998) and Sirovic (1987) was utilized in this work to solve the associated 
eigenvalue problem.

In this method, an ensemble of  discrete instantaneous flow vari-
ables ( , )�  (velocity fields in this study) acquired at time instants 

, , , ,1 2 …  is considered in a two-dimensional (2D) slice  of the 
3D computational domain. The POD analysis is performed primarily 
in 2D slices cut in the streamwise and cross-streamwise directions to 
avoid the excessive computer memory requirements of a full 3D POD 
analysis of the DNS datasets. The full grid resolution of the DNS data is 
used. The time-average of the velocity field is computed and a new set 
of measurements ( , ),� which is the fluctuating velocity field, is calcu-
lated as follows:

 
( ) ( , ), ( , ) ( , )� � � �1

1

and ( )�

 
(5.8)
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A two-point correlation matrix C can be constructed as

 
, ( , ) ( , ) , , , ,1 1 2� � �

…where ,,
 

(5.9)

The eigenvectors 
�

 and their corresponding eigenvalues  can be 
found from the numerical solution of the equation

 C =� �
…k , , , , ,where 1 2  (5.10)

Using the eigenvectors 
�

 of matrix C, POD eigenfunctions ( )� at 
mode , which are optimal for the representation of the corresponding 
DNS data, can be linearly constructed by combining the fluctuating veloc-
ity as

 
( ) ( , )� � �

1  
(5.11)

The POD eigenfunctions are orthogonal while the eigenvalues are 
positive ( )0 in descending order 1 , where 1 2, , , .… Each 
eigenvalue quantifies the kinetic energy of the flow field datasets. The aver-
age fluctuating energy in the datasets can be calculated by summing up all 
the eigenvalues, 1 . The POD eigenfunctions can then be used to 
reconstruct the velocity fields as

 

� � � �( , ) ( )
1  

(5.12)

where  is the number of POD modes to be used for the reconstruction. 
Equation (5.12) is known as the “POD reconstruction formula.” In general 
the first few modes capture most of the energy of the flow as quantified by 
the  values. In other words, �  for flow reconstruction of large 
datasets using POD.

A POD analysis as described above was performed for the instanta-
neous velocity fields for the time interval between 1  30.00 and 2  36.67, 
where hundreds of instantaneous flow “snapshots” were recorded and 
analyzed. Sample results are shown in Tables 5.1 and 5.2 and Figures 5.13–
5.16 for the velocity fields in the middle plane of the domain   3 for the 
two impinging cases. These results from the POD analysis correspond to 
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the last time instant 2  36.67. Tables 5.1 and 5.2 provide the normalized 
eigenvalues and their cumulative contributions to the fluctuating energy in 
the plane of   3 for the nonswirling and swirling cases respectively. From 
Tables 5.1 and 5.2, it is clear that more than 95% of the total energy, which 
is the normal criterion used to judge the number of important modes in 
the flow field, can be captured in the first five POD modes in both com-
putational cases, for both velocity components  and . In the meantime, 
the first ten modes capture more than 99% of the total energy, whereas 
the rest of the modes contribute only a negligible amount of energy to the 
flow field. The trend of the mode effects is also shown in Figures 5.13 and 
5.14, indicating an overall picture of the POD modal energy distributions 
in the flow field.

Figure 5.13 shows the energy content of each POD mode and f luc-
tuating energy of the POD modes for the two velocity components 
( , ) for the nonswirling case in the   3 plane, while Figure 5.14 
shows those for the swirling case. In these figures, the “energy content” 
represents the contribution of an individual mode while the “f luctu-
ating energy” represents the cumulative contributions of the relevant 
modes. From Figures 5.13 and 5.14, it is clear that the first four POD 
modes contain most of the energy of the f low. It is also observed that 
there is no significant difference between the modal energy distribu-
tions of the  component and  component. This indicates that the 
f low is of multidimensional nature. The formation of vortical structure 
due to the development of the Kelvin–Helmholtz instability in the f low 
field leads to a multidimensional f low field. There are several modes 
important to the energy distributions of the f low field, corresponding 
to the complex vortical f low field. The mode effects on the f low field 
are shown in Figures. 5.15 and 5.16.

POD analysis can be used to reconstruct the flow fields to illustrate 
the mode effects. Figures 5.15 and 5.16 show such reconstructions. In 
Figures 5.15, reconstructed velocity fields based on the first six most ener-
getic POD modes are shown, in the section of   3 for the nonswirling 
case, while Figures 5.16 shows those for the swirling case. In both figures, 
it is evident that the flow field changes appreciably when the number of 
modes used in the velocity reconstruction is increased from 1 to 4, where 
the reconstructed flow field shows a gradual change with the increase in 
mode number. In the meantime, there is not any noticeable change when 
the number of modes used in the velocity reconstruction is increased from 
4 to 6 while the reconstructed flow fields greatly resemble the corresponding 
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DNS velocity field. In Figures 5.15 and 5.16, the differences between the 
velocity fields reconstructed using different numbers of modes indicate the 
amount of energy captured by each mode. The modal effects are evident 
in the flow field reconstructed using different numbers of modes, showing 
the flow structural development. As the number of modes increases, the 
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FIGURE 5.13 Energy content of each POD mode and fluctuating energy of 
the POD modes for the two velocity components ( , ) for the nonswirling 
case in the   3 plane.
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FIGURE 5.14 Energy content of each POD mode and fluctuating energy 
of the POD modes for the two velocity components ( , ) for the swirling 
case in the   3 plane.



132 n Numerical Techniques for Direct and Large-Eddy Simulations

Total Number of Modes: 1

z

6

5

4

3

2

1

0

x
(a)

0 1 2 3 4 5 6

 

Total Number of Modes: 2

z

6

5

4

3

2

1

0

x
(b)

0 1 2 3 4 5 6

Total Number of Modes: 3

z

6

5

4

3

2

1

0

x
(c)

0 1 2 3 4 5 6

 

Total Number of Modes: 4

z

6

5

4

3

2

1

0

x
(d)

0 1 2 3 4 5 6

Total Number of Modes: 5

z

6

5

4

3

2

1

0

x
(e)

0 1 2 3 4 5 6

 

Total Number of Modes: 6

z

6

5

4

3

2

1

0

x
(f )

0 1 2 3 4 5 6

FIGURE 5.15 Reconstructed velocity fields based on the first six most ener-
getic POD modes in   3 plane of the nonswirling case.
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FIGURE 5.16 Reconstructed velocity fields based on the first six most ener-
getic POD modes in   3 plane of the swirling case.
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fluctuating energy captured increases and the reconstructed velocity field 
gradually approaches the DNS results.

In Figure 5.15, the most distinctive feature is that the wall effects are not 
captured when the number of modes used in the velocity reconstruction 
is small, indicating that the wall effects on the flow field are mainly associ-
ated with the higher mode numbers. In Figure 5.16, the most noticeable 
feature is that the first mode does not capture much of the flow velocity in 
the  direction, while it is recovered when the number of modes used in 
the velocity reconstruction is increased to 2. This indicates that the most 
energetic mode is mainly associated with the cross-streamwise velocity, 
while the second most energetic mode is associated with the streamwise 
velocity in this flow field. Clearly, POD analysis gives information on the 
dynamic feature of the flow field, which is not possible to obtain from a 
Fourier analysis.

The annular nonpremixed flame develops complex structures. Unsteady 
vortical structures in the jet column due to the Kelvin–Helmholtz–type 
shear layer instability originated from the two adjacent circular shear 
layers and have been observed at downstream locations. Under swirling 
conditions, the annular jet flame also develops PVC involving rotating 
motion on the inner side of the jet column. It was noticed that the PVC 
does not change appreciably with time, while the vortical structures in 
the jet column are highly unsteady. Time averaging of the results was also 
performed to examine the mean flow properties and the effects of swirl. 
The interval used for the averaging was : . ~ . ,30 00 36 67  after the flow 
had reached a developed stage. Figure 5.17 shows the time-averaged flow 
and combustion properties along the centerline of the annular jet, while 
Figures 5.18 and 5.19 show the averaged reaction rate and streamwise 
velocity contours in the middle plane   3.

In Figure 5.17(a), it can be seen that the reaction rate profiles of both 
cases have a few peaks along the jet centerline. For the nonpremixed jet 
flame under investigation, the peaks observed in the averaged reaction 
rate profile correspond to locations where intense chemical reaction takes 
place when the fuel and oxidizer have been well mixed. In both cases, a 
small sharp peak located very close to the burner mouth can be observed. 
The small peak near the burner mouth is due to the formation of a recir-
culation zone near the fuel jet nozzle exit. In an annular configuration, 
the existence of the recirculation zone adjacent to the nozzle exit is associ-
ated with the formation of a stagnation region when the jet column meets 
at the center. The formation of this recirculation zone will bring the hot 



DNS of Compressible Flows n 135

combustion product back to and enhance the fuel/oxidizer mixing near 
the burner mouth, thus leading to the formation of a flame attached to the 
burner mouth. For the nonswirling case, a large peak at downstream loca-
tions is observed, which decays to zero value at the downstream wall bound-
ary. For the swirling case, two large peaks are observed at the downstream 
locations. These large peaks can be better understood in conjunction with 
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the reaction rate contours shown in Figure 5.18. For the nonswirling case, 
the flame is continuous without intermittence. However, there is an inter-
mittent region at the downstream location of the swirling flame, which is 
located above the “mushroom”-shaped flame. For the swirling case, the 
formation of reaction zones near the downstream wall above the inter-
mittent region can still be observed, which is due to the enhanced fuel/
oxidizer mixing associated with the wall impingement. The “mushroom”-
shaped swirling flame indicates a shorter flame under swirling conditions. 
Swirl enhances the mixing; therefore, the flame length reduces under the 
swirling conditions but the unmixed fuel/oxidizer mixture can be further 
mixed and burnt in the downstream near-wall region due to the formation 
of a stagnation zone over there. For the annular swirling impinging flame, 
the interactions between the annular configuration, swirling motion, and 
wall impingement lead to several peaks in the averaged reaction rate along 
the jet centerline, as shown in Figure 5.17(a).

The annular jet flame also has a complex velocity field. The recircu-
lation zone due to the annular configuration in the nonswirling case is 
located very close to the nozzle exit, the PVC of the swirling case is located 
at slightly downstream locations, and the stagnation zone due to wall 
impingement in both cases is located further downstream. Both the recir-
culation zone and the PVC involve flow reversals, indicated by the nega-
tive velocity values in Figure 5.17(b) and the dashed lines in Figure 5.19. 
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FIGURE 5.19 Time-averaged streamwise velocity contours in the   3 
plane (solid line: positive; dashed line: negative).
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It is also noticed that the swirling case does not have appreciable stream-
wise velocities at downstream locations after the PVC, while the nonswirl-
ing case still develops significant streamwise velocities at downstream 
locations due to the continuous development of the flame. Under swirling 
conditions, the interaction between the recirculation zone associated with 
the annular configuration and the swirl-induced PVC affects the flow and 
flame dynamics. They are both located on the inner side of the jet column, 
involving flow reversals in proximity. Depending on the degree of swirl, 
the interaction may lead to different consequences: They may coexist or 
one zone may be overwhelmed by another. Figure 5.19 displays this inter-
action. For the nonswirling case, only the “bell-shaped” recirculation zone 
associated with the annular configuration exists. For swirl number 0.4, the 
“bell-shaped” recirculation zone and the inner-structure of the PVC coex-
ist, leading to a complex flow and an intensified reaction zone very close 
to the nozzle exit (indicated in Figure 5.17(a)) due to the enhanced mixing. 
As shown in Figures 5.17(b) and 5.19, the interaction between the recircu-
lation zone and the PVC and the coexistence of them led to a small posi-
tive streamwise velocity adjacent to the central point of the burn mouth.

From the averaged f low quantities shown, it is noticed that the vor-
tical structures in the jet column due to the Kelvin–Helmholtz type 
shear layer instability cannot be observed because these structures are 
unsteady and are continuously convected downstream by the mean 
f low and would not appear when the f low field is time averaged. The 
results shown indicate that swirl has significant effects on the f luid 
dynamics of the f lame because of the interaction between the recircu-
lation zone near the jet nozzle exit and the PVC associated with swirl. 
The annular nonpremixed f lame develops complex structures, where 
a recirculation zone is formed near the nozzle exit due to the annu-
lar configuration that stabilizes the f lame. Under swirling conditions, 
the annular jet also develops PVC involving recirculation and rotat-
ing motion on the inner side of the jet column. Unlike the vortical 
structures in the jet column, which are highly unsteady, the recircula-
tion zones do not change appreciably with time. At a moderate swirl 
number 0.4, the coexistence of the recirculation zone associated with 
the annular configuration and the inner PVC leads to a f lame with 
strong reaction attached to the burner mouth. It was found that swirl 
has significant effects on f lame dynamics. Under swirling conditions, 
the f lame develops into a “mushroom”-like structure, and the f lame 
becomes shorter but with much larger spreading at the downstream 
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locations. The DNS results have revealed that the annular configuration 
stabilizes the f lame, while swirl shortens f lame length and enhances 
mixing and spreading of the f lame.

Finally, the combustion results should be viewed with caution, bear-
ing in mind the simplifications made in the DNS, for example, one-step 
global reaction, highly simplified transport properties, and relatively 
low Reynolds number. DNS with more realistic chemical and physical 
details will require substantially more CPU time than is readily avail-
able. However, given the fact that much combustion physics is yet to be 
explored in the interesting annular burner configuration, further DNS, 
LES, and experimental studies are justified.

II.  NUMERICAL FEATURES: HIGH-ORDER 
SCHEMES FOR SPATIAL DISCRETIZATION

From the above examples, it can be seen that a common feature in the 
numerical methods used in DNS studies of compressible jet flows is that 
high-order finite difference schemes have been used for spatial differen-
tiation. When periodic boundary conditions are employed, a spectral 
method is also used. Highly accurate numerical schemes are needed in 
DNS because turbulence cannot be resolved using lower-order numeri-
cal schemes where numerical diffusion can be larger than the small-scale 
turbulent transportation. The majority of existing DNS and LES codes 
for flow and combustion applications employ high-order finite difference 
schemes, due to the fact that their computing costs are generally lower than 
those of high-order finite volume methods (Ekaterinaris 2005). Although 
spectral methods are numerically accurate with low computing costs, 
they are not easy to apply for practical boundaries, complex domains, and 
compressible flows with discontinuities. Therefore, high-order finite dif-
ference schemes have been predominantly used in DNS of compressible 
flows for the spatial discretization. The time integration of the governing 
equations follows the time integration methods discussed in Chapter 3, 
while the specification of the boundary conditions follows those presented 
in Chapter 2. Therefore, they are not discussed here. The discussions of 
high-order finite difference schemes for spatial discretization closely fol-
low those by Ekaterinaris (2005).

Finite difference schemes for spatial discretization can be obtained 
from Taylor series expansion. Continuous efforts have been made toward 
developing high-order finite difference (FD) methods for DNS and LES. 
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For solving the nonlinear Navier–Stokes equations, straightforward appli-
cation of high-order accurate central difference schemes proved to be very 
problematic, due to the numerical instabilities from the spurious modes 
associated with the unresolvable high-frequency modes of the numeri-
cal discretization. Rai and Moin (1991) found that high-order upwind 
schemes are more promising to simulate turbulent flows. However, early 
attempts to apply high-order finite differences were often frustrating 
because of lack of robustness of the proposed high-order finite difference 
schemes compared to spectral methods. In spite of the difficulties, some 
success was achieved for the computation of incompressible flows (Rai and 
Moin 1991) and compressible flows (Rai and Moin 1993) with high-order, 
upwind FD schemes. For the simulation of rectangular jets, Rembold et 
al. (2002) used a fifth-order compact upwind-biased scheme for the spatial 
discretization of the convective terms. In Rai and Moin (1991), the fifth-
order accurate derivatives were computed with upwind-biased formulae 
based on the sign of the velocity as

1
120

6 60 40 120 30 42 1 1 2[ 3 0] for
 

(5.13)

1
120

4 30 12 40 60 62 1 1 2[ 3 0] for
 

(5.14)

Upwind-biased schemes alleviated some of the problems encountered 
with centered schemes such as numerical oscillations associated with the 
spurious modes. Upwind-biased schemes, however, based only on formal 
accuracy (truncation error) inherently introduce some form of artificial 
smoothing or dissipation error that makes them inappropriate for long-
time integration such as that encountered in DNS and LES.

In contrast to upwind methods, central difference schemes do not intro-
duce artificial dissipation. The dominant error in centered discretization 
is dispersion error, which is depressive. The stencils for the fourth-, sixth-, 
and eighth-order accurate symmetric, explicit, centered schemes are five-, 
seven- and nine-point wide, respectively. Large stencils are computation-
ally disadvantageous because excessive amounts of matrix inversions are 
involved. As a result, only the fourth-order explicit scheme was used in 
CFD. Explicit fourth-order, finite difference formulae are often used to 
discretize the second-order derivatives in the viscous terms by taking 
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the first derivative twice. In order to reduce the stencil width, the inner 
derivative is evaluated at half-points. A narrow stencil would be hugely 
advantageous for a central differencing with formal accuracy higher than 
sixth order.

The first systematic attempt to develop high-order accurate, narrow-
stencil, finite difference schemes appropriate for problems with a wide 
range of scales was presented by Lele (1992). Compared to the traditional 
FD approximations, the compact schemes presented by Lele (1992) pro-
vided a better representation of the short-length scales. As a result, 
compact high-order schemes are closer to spectral methods and at the 
same time maintain the freedom to retain accuracy in complex stretched 
meshes. Emphasis on the development of compact schemes was given 
for the resolution characteristics of the difference approximations rather 
than formal accuracy or the truncation error. Compared with spectral 
methods, a significant advantage offered by the compact finite difference 
schemes is the convenience in the specification of boundary conditions. 
The centered compact or Padé schemes of Lele (1992) are briefly intro-
duced as follows.

A. Centered Padé Schemes

The “compact” or Padé schemes presented by Lele (1992) can be derived 
from Taylor series expansions and they compute the derivatives simulta-
neously along an entire line in a coupled fashion. These centered schemes 
require small stencil support, which is of particular interest in DNS. The 
main advantage of compact schemes is simplicity in boundary condition 
treatment and smaller truncation error compared to their noncompact 
counterparts of equivalent order. The first-order derivative  of a vari-
able  in the governing equations can be obtained in the computational 
domain on an equally spaced mesh with size , using a seven-point wide 
stencil finite difference discretization, given by

 

2 1 1 2

1 1

2
2 2 3 3

4 6  
(5.15)

In Equation (5.15), coefficients , , , , and  determine the spatial accu-
racy of the discretization. The stencil becomes five-point wide if  and  
are set to be zero. Different values of the coefficients in the formula yield 
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schemes of different accuracy ranging from the fourth-order explicit 
method (E4) to the compact tenth-order accurate scheme (C10). The val-
ues of the coefficients in Equation (5.15) for schemes of different order of 
accuracy are shown in Table 5.3.

In this table, C8/3 refers to the eighth-order compact scheme that 
requires tridiagonal matrix inversion and C8/5 refers to the eight-order 
compact scheme that requires pentadiagonal matrix inversion. Apparently 
the pentadiagonal matrix inversion is more costly than the tridiagonal 
matrix inversion in terms of computational costs. For the tridiagonal 
matrix inversion, it can be conveniently achieved by the Gaussian elimi-
nation known as the tridiagonal matrix algorithm (TDMA), or Thomas 
algorithm (Conte and de Boor, 1972). The second-order derivative  of the 
variable  can also be obtained in the computational domain on an equally 
spaced mesh using a general form similar to the first-order derivative (Lele 
1992). For both the first- and second-order derivatives, once the derivatives 
in the computational domain on an equally spaced mesh are obtained, 
derivatives in the physical domain with possibly nonuniform grid distri-
bution can be obtained using the metrics for grid transformation.

The accuracy of different schemes can be assessed by the wavespace 
resolution of various explicit and compact schemes using Fourier analy-
sis (Lele 1992). For Equation (5.15), considering that the exact result is a 
sinusoidal function   , where  is the uniform grid spacing and  
is the wavenumber, the exact value of the derivative is ,  while 
the derivative computed with finite difference formula can be given by 
ˆ ˆ , where ˆ  is the modified wavenumber, which depends on the 

form of the FD formula used for the evaluation of the first-order derivative. 
The difference between the true wavenumber  and the modified wave-
number ˆ  is a measure of the scheme’s resolving ability. The modified 

TABLE 5.3 Padé Schemes with Five- or Seven-Point Stencil
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wavenumber of various finite difference schemes can be obtained using 
standard shift operators ˆ ˆ . For example, the modified number 
of the fourth-order accurate explicit scheme of Equation (5.15) is given by 
ˆ [ sin sin( )]/8 2 6 , with analogous expression for the other methods. 
A comparison of the modified wavenumbers of the first derivative for sev-
eral central compact and noncompact schemes is shown in Figure 5.20, 
using the scaled wavenumber 2 / ,  where  is the wavelength 
and the number of intervals or grid points per wavelength is 2 / . 
Therefore, the lower the scheme’s resolving ability, the higher the num-
ber of points per wavelength required to resolve accurately a certain pre-
determined portion of the range [ , ].0 2 This indicates that higher-order 
schemes need less grid points than do lower-order schemes for achieving 
the same level of accuracy.

As indicated by Equation (5.15) and Table 5.3, a seven-point stencil is 
needed for the eighth-order compact scheme C8/5 and the tenth-order 
scheme C10, which requires a pentadiagonal matrix inversion. In the 
meantime, a tridiagonal matrix inversion is needed for schemes such as 
the sixth-order scheme C6 and the fourth-order scheme C4. The tridiago-
nal matrix inversion can be conveniently achieved by the TDMA algo-
rithm, which is less expensive than the pentadiagonal matrix inversion. 

FIGURE 5.20 Wave space resolutions of explicit and compact centered 
schemes for the first-order derivative. (Ekaterinaris 2005; with permission 
from Elsevier Science Ltd.)
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Therefore, the sixth-order and fourth-order compact schemes have been 
considered as good compromises between accuracy and computational 
speeds for DNS applications and have been broadly used in DNS codes. 
They are briefly summarized as follows. Arranging the coefficients in 
Equation (5.15) in a slightly different way, the first-order derivatives can 
be calculated using a five-point stencil from

 
1 1

1 1 2 2

2 4  
(5.16)

In Equation (5.16), the coefficients  and  can be calculated from  using 
( )/2 4 3 and ( )/4 3  with   4 leading to a fourth-order scheme 

and   3 leading to a sixth-order scheme. Similarly, the second-order 
derivatives can be calculated using a five-point stencil from

 
1 1

1 1
2

22 22
4

2
2  

(5.17)

In Equation (5.17), the coefficients are different from those in Equation 
(5.16), which can be calculated using ( )/4 4 3 and ( )/10 3 with 

10  leading to a fourth-order scheme and   5.5 leading to a sixth-
order scheme.

B. Boundary Closures for High-Order Finite Difference Schemes

At the boundary points or points near the boundaries, central differencing 
is not possible because points outside the computational domain cannot 
be included. Inaccuracies in the application of discretization at boundaries 
can develop into spurious modes leading to numerical oscillations in the 
solution. One primary difficulty in using higher-order schemes is identi-
fication of stable boundary schemes that preserve their formal accuracy. 
Boundary closures for various explicit and compact high-order centered 
schemes were presented by Carpenter et al. (1993), who also assessed the 
stability characteristics of compact fourth- and sixth-order spatial opera-
tors with boundary closures.

At the boundary points or points near the boundaries, the discretization 
inevitably becomes one-sided. Numerical solutions of hyperbolic systems pre-
serve their formal spatial accuracy when an th-order inner scheme is closed 
with at least an (   1)th-order boundary scheme (Carpenter et al. 1993). 
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Considering the finite difference representation of the continuous derivative 
 on an equally spaced mesh with the discrete form of the first-order deriva-

tive involving functional values at discrete points 1 2, , ,… , for an explicit 
fourth-order accurate scheme with uniformly distributed mesh in the compu-
tational domain, the spatial discretization with boundary closures is obtained 
by Carpenter et al. (1993) as
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The fourth-order, compact FD scheme with narrower stencil for the 
approximation of  requires closures only at   1 and   . The fourth-
order compact scheme with boundary closures is
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(5.19)

The sixth-order compact scheme has a five-point wide stencil and utilizes 
information from all five points explicitly and three points implicitly 
(tridiagonal system). Boundary closures must be provided at two points 
at each end of the domain   1, 2 and   1, . To ensure formal sixth-
order formula, for example, the optimal scheme, in shorthand nomen-
clature, would be (5, 5-6-5, 5); for example, fifth order at the boundaries  
  1, 2,   1, , and sixth order in the interior. This closure preserves 

the formal spatial accuracy since an th-order inner scheme is closed 
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with an (   1)th-order boundary scheme, but a stable scheme at the 
boundary points was difficult to find (Carpenter et al. 1993). Therefore, 
the (3, 5-6-5, 3) and the (4, 5-6-5, 4) schemes are used for discretization 
with the sixth-order compact scheme.

The third-order closure at   1 is

 
2 4 1 5 41 2 1 2 3( )

 
(5.20)

The fourth-order closure at   1 is

 
6 18 1 17 9 91 2 1 2 3 4( )

 
(5.21)

and the fifth-order closure at   2 is accomplished by

 
3 18 9 1 10 9 181 2 3 1 2 3 4( )

 
(5.22)

Practically, the (3, 4-6-4, 3) scheme is frequently used in DNS codes, 
referred to as the Padé 3/4/6 scheme in Chapter 2, where the formal accu-
racy of sixth order holds only in the interior of the computational domain. 
In this formulation, the number of neighboring points involved on one 
side of the boundary points or points near the boundaries is the same 
as that of the inner points. The scheme is of third-order accuracy at the 
boundary points, of fourth order at the next to the boundary points, and 
of sixth order at inner points only. The formula for the Padé 3/4/6 scheme 
were given in Equations (2.17)–(2.20). Although boundary closures are an 
essential part of high-order schemes, it was found that the effect of bound-
ary closures on the overall resolution is indeed small even for highly accu-
rate DNS (Adams 1998). Stable, accurate formula for the boundary points 
can be found in Carpenter et al. (1993).

Another issue encountered with high-order finite difference schemes 
used in CFD is grid uniformity, which affects the overall accuracy. The use 
of nonuniform grids in turbulent flow simulations is very often inevitable, 
especially in computational aeroacoustics where a large computational 
domain is needed (e.g., Jiang et al. 2004; 2006). The typical ratio of the maxi-
mum to the minimum grid spacing is about 100. The behavior of the second- 
and fourth-order explicit centered schemes and the fourth- and sixth-order 
compact schemes was assessed by Chung and Tucker (2003) for smoothly 
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stretched grids. It was found that grid quality has stronger effects on the 
higher-order compact schemes than on the explicit schemes. Furthermore, 
an accuracy deterioration of higher-order compact schemes with low grid 
density was observed for nonuniform meshes.

C. Other High-Order Finite Difference Schemes

Mahesh (1998) presented a family of high-order finite difference schemes 
with good spectral resolution; they are more general than the standard 
compact schemes presented by Lele (1992). These schemes are symmetric 
and differ from the standard compact schemes in that the first and second 
derivatives are evaluated simultaneously. In addition, for the same stencil 
width, the schemes proposed by Mahesh (1998) are two orders higher in 
accuracy with significantly better spectral representation, and the compu-
tational cost for the evaluation of both derivatives is shown to be essen-
tially the same as standard compact schemes. As a result, the proposed 
schemes appear to be attractive alternatives to standard compact schemes 
for the Navier–Stokes equations that include second-order derivative eval-
uation in the viscous terms. The schemes that compute simultaneously 
the first and the second derivatives of a function  given at a uniform mesh 
with spacing  are defined by

 

1 1 0 2 1 1 1 0 2( 1

1 2 2 1 0 3 1 4 2
1

)

( ))
 

(5.23)

By enforcing symmetry for the coefficients and considering 0  1 and 
0  1, Mahesh (1998) obtained from Equation (5.23) a sixth- and an eighth-

order compact scheme for the simultaneous evaluations of the first- and 
second-order derivatives. In the scheme of Mahesh (1998), the first and 
second derivatives are computed in a coupled fashion, using a narrower 
stencil compared to the standard compact scheme of Lele (1992).

High-order accurate centered schemes are nondissipative and they 
are particularly suitable for the convection of small-scale disturbances 
governed by the linearized equations such as the linearized Euler equa-
tions. Nondissipative, central-difference discretization for nonlinear 
problems, however, may produce high-frequency spurious modes that 
originate from mesh nonuniformities, inaccuracies of the boundary 
conditions, and nonlinear interactions. Spectral-type (Gaitonde and 
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Visbal 2000) or characteristic-based filters (Yee et al. 1999) may be used 
to stabilize numerical solutions performed with central-difference meth-
ods. Filtering of the solution with explicit-type filters was also proposed 
by Lele (1992). These filters are normally applied on the components of 
the computed solution vector. The characteristic-based filters such as 
those developed by Yee et al. (1999) remove spurious oscillations and 
in addition can be used for shock capturing. A recent improvement in 
characteristic-based filters is application of the essentially nonoscilla-
tory (ENO) and weighted ENO (WENO) procedure in the evaluation of 
the dissipative fluxes (Garnier et al. 2001), which may be used for com-
putations of highly compressible flows involving shock waves.

There are also other numerical schemes proposed for DNS of compress-
ible flows. Sandham et al. (2002) proposed a stable high-order numerical 
scheme for DNS of shock-free compressible turbulence based on entropy 
splitting. The numerical scheme contains no upwinding, artificial dissipa-
tion, or filtering. Instead, the method relies on the stabilizing mechanisms 
of an appropriate conditioning of the governing equations and the use of 
compatible spatial difference operators in the interior scheme for the inte-
rior grid points as well as the in-the-boundary scheme for the boundary 
points. An entropy-splitting approach splits the inviscid flux derivatives 
into conservative and nonconservative portions. The spatial difference 
operators satisfy a summation-by-parts condition, leading to a stable 
scheme including both the interior and boundary points for the initial 
boundary value problem using a generalized energy estimate. A Laplacian 
formulation of the viscous and heat conduction terms on the right-hand 
side of the Navier–Stokes equations is used to ensure that any tendency to 
odd-even decoupling associated with central schemes can be countered by 
the fluid viscosity. The resulting methods are able to minimize the spu-
rious high-frequency oscillations associated with pure central schemes, 
especially for long time integration applications such as DNS. For valida-
tion purposes, the methods were tested in a DNS of compressible turbulent 
plane channel flow at low values of friction Mach number, where reference 
turbulence databases existed (Coleman et al. 1995). It was demonstrated 
that the methods were robust in terms of grid resolution. Stability limits 
on the range of the splitting parameter were determined from numerical 
tests.

The high-order finite difference schemes have been a success in DNS 
and have been proven efficient and accurate. The symmetric, centered 
Padé schemes are nondissipative and favorable in terms of accuracy, but 
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they produce nonphysical oscillations in the region of flow discontinui-
ties such as shocks. This has limited the application of Padé schemes 
to relatively low-speed flows or high-speed flows without shock waves. 
For high-speed compressible flows containing shock waves such as those 
encountered in many aero-related problems, the numerical schemes need 
to be able to predict accurately the shock waves without nonphysical 
oscillations. To meet this challenge, there have been some recent efforts 
in combining a high-order Padé scheme with the ENO and WENO 
schemes (e.g., Wang and Huang 2002; Ren et al. 2003; Shen et al. 2006; 
Shen and Yang 2007). These hybrid Padé–ENO or Padé–WENO schemes 
have the advantages of the Padé scheme and ENO/WENO schemes. On 
the one hand, they possess the merit of the finite compact difference 
scheme, which is accurate and computationally efficient; on the other 
hand, they have the high-resolution property of ENO/WENO schemes 
for shock capturing.

For the computation of flows with discontinuities and nonlinearities, 
some form of upwinding is often needed. The idea of modifying or optimiz-
ing a finite difference scheme by calculating values of the coefficients that 
introduce upwinding or minimize a particular type of error instead of the 
truncation error has been used successfully in the design of new schemes 
with desired properties. Modifications of standard centered, explicit, and 
compact schemes were carried out by Zhong (1998). For the modified 
schemes, the formal order of the scheme for certain stencil size was sac-
rificed and high-order upwinding with low dissipation was introduced. 
Other optimized schemes have also been developed in the field of com-
putational aeroacoustics. The rationale for optimizing numerical schemes 
for short waves is that for long waves, even lower-order schemes can do 
well. The short waves, however, require high resolution in order to obtain 
accurate representation of the broadband acoustic waves. For example, the 
optimized FD scheme of Tam and Webb (1993), referred to as the disper-
sion relation preserving (DRP) scheme, aims to predict accurately the short 
waves and uses central differences to approximate the first derivative. The 
approximation is therefore nondissipative in nature. The maximum formal 
order of accuracy of the centered scheme of Tam and Webb (1993) for cer-
tain stencil sizes is sacrificed in order to optimize resolution of the high 
wavenumbers. Although nondissipative schemes are ideal for aeroacoustics, 
numerical dissipation is often required to damp nonphysical waves gener-
ated by boundary and/or initial conditions. In many practical applications, 
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therefore, high-order dissipative terms were added to the centered scheme of 
Tam and Webb (1993). There have also been optimized DRP schemes, such 
as those developed by Lockard et al. (1995) and Zhuang and Chen (1998), to 
alleviate the nonphysical waves associated with the boundary and/or initial 
conditions.

D. Finite Volume and Spectral-Volume Methods

Although the numerical methods used in DNS have been predominantly 
based on finite difference methods, there are a few severe problems such as 
incapability of dealing with complex geometries and difficulties in simu-
lations of nonlinear phenomena. The main disadvantage of the finite vol-
ume (FV) formulation, especially when high-order accuracy is required, 
is the significantly higher computing cost of the FV methods compared to 
the finite difference (FD) formulation. The advantage of the FV formula-
tion with respect to the FD formulation is that the former is based on the 
integral form of the conservation laws. As a result, flux conservation is 
enforced even on arbitrary meshes since the fluxes collapse telescopically 
by construction. Furthermore, analysis of the finite volume methods shows 
that they have superior performance in the high wavenumber range and 
that they exhibit lower truncation error, and therefore they are advanta-
geous for the numerical simulation of nonlinear phenomena. Ekaterinaris 
(2005) presented the solution procedure of the multidimensional problem 
with the finite volume method, which consists of the following steps:

Step 1. Reconstruction: Given the average values of the solution, recon-
struct a polynomial approximation to the solution in each control 
volume. This polynomial may vary discontinuously from one control 
volume to another control volume. Reconstruction is the crucial step 
in the finite volume formulation.

Step 2. Flux quadrature: Using the piecewise polynomial reconstruc-
tion of the solution, approximate the flux integral or in the discrete 
form the summation of fluxes by numerical quadrature.

Step 3. Evolution and projection: A Riemann solver and an appropri-
ate temporal discretization scheme are used to evolve the numeri-
cal approximation of the flux integral. (In FV methods, Riemann 
problems appear naturally for the solution of equations of conserva-
tion laws due to the discreteness of the grid.)
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Gaitonde and Shang (1997) developed high-order (fourth- and sixth-or-
der) compact difference-based schemes in the finite volume context. The 
formulation of these schemes utilizes the primitive function approach. 
Optimization of the schemes for better linear wave propagation character-
istics can be performed by minimizing dispersion and isotropy errors.

Recently, a promising numerical method—the spectral-volume (SV) 
method (Wang 2002), which is another type of high-order accurate, con-
servative, and computationally efficient scheme—has been introduced to 
achieve high-order accuracy in an efficient manner similar to spectral 
methods and at the same time retain the benefits of the finite volume formu-
lations for problems with discontinuities. In the spectral-volume method, 
cell-averaged data from each triangular or tetrahedral finite volume is 
used to reconstruct a high-order approximation in the spectral volume, 
while Riemann solvers are used to compute the fluxes at the spectral- 
volume boundaries. Since it does not require information from neigh-
boring cells to perform reconstruction, it can be potentially very efficient 
and accurate. The spectral-volume method might be able to improve the 
capability of DNS and LES significantly since practical engineering prob-
lems are predominantly of complex geometry. However, for an SV method 
to be more broadly used, the computational efficiency and accuracy of 
the method with different orders of accuracy need to be systematically 
assessed and compared with the compact finite difference schemes with 
the same orders of accuracy.
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6C H A P T E R  

LES of Incompressible Flows

As an advanced CFD approach, LES is very promising for practi-
cal applications. LES has been successfully applied to many indus-

trial problems, in contrast to DNS, which has been mainly restricted 
to simple physical problems to understand the flow physics. LES has to 
be time-dependent three-dimensional calculations, similar to DNS. LES 
offers several advantages over the traditional CFD based on the RANS 
modeling approach and DNS. LES is able to predict instantaneous flow 
characteristics and resolve the large turbulent flow structures, in contrast 
to the traditional CFD based on the RANS approach, which provides 
only averaged flow quantities. Compared with DNS, the small scales 
are modeled in a LES approach and the requirement on accuracy of the 
numerical schemes is not as high as that of DNS. LES can be applied to 
problems with complex geometry using unstructured mesh and finite 
volume methods, but current DNS deals with only simple geometries 
using predominantly finite difference and spectral methods to achieve 
high-order accuracy. In terms of computational costs, LES is also much 
cheaper than DNS since very fine mesh is not required to resolve the 
small scales as in DNS.

This chapter is devoted to LES of incompressible flows, focusing on 
applications to complex geometries. First, some sample results are given, 
including results for both reacting and nonreacting flows. Second, sub-
grid scale (SGS) modeling, which is the most distinctive feature of LES, is 
briefly discussed in the context of incompressible flows. Finally, important 
numerical features are discussed, including LES on unstructured grids 
and the immersed boundary technique for complex geometries.
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I.  SAMPLE RESULTS: LES OF INCOMPRESSIBLE 
FLOWS IN COMPLEX GEOMETRIES

A. LES of Reacting Turbulent Flows in Complex Geometries 
(Mahesh et al. 2006; di Mare et al. 2004)

Mahesh et al. (2006) performed LES of a coaxial Pratt and Whitney gas-
turbine combustor and an idealized coaxial dump combustor. The two 
geometries are shown in Figure 6.1. The incompressible Navier–Stokes 
equations are filtered to yield the incompressible LES equations. The sub-
grid stress is modeled via a classical Smagorinsky model. A numerical 
algorithm that emphasizes discrete energy conservation on unstructured 
grid with hybrid arbitrary elements was used to solve the governing equa-
tions. The algorithm implies that the convective and pressure terms in 
the discrete kinetic energy equation may be expressed in divergence form. 
The integral of the kinetic energy over the computational domain is deter-
mined by its boundary fluxes and pressure-work at the boundaries. This 
is a useful property for the numerical algorithm since it implies that the 
sum of positive quantities is bounded. In the simulations performed by 
Mahesh et al. (2006), the numerical method was based on an earlier work 

FIGURE 6.1 Schematics of an idealized coaxial dump combustor (top) and 
the combustor from a Pratt and Whitney gas-turbine engine (bottom).
(Mahesh et al. 2006; with permission from ASME.)
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by Mahesh et al. (2004), which is a predictor–corrector formulation that 
emphasizes energy conservation for the convection and pressure terms 
on arbitrary grids. In the method of Mahesh et al. (2004) for LES of com-
plex geometry, time advancement is either explicit using the second-order 
Adams–Bashforth method or fully implicit using the Crank–Nicholson 
scheme along with linearization of the nonlinear terms. The Cartesian 
components of momentum, density, and pressure are stored at the cen-
troids of the computational elements, and the face-normal velocity is 
stored at the centroids of the faces. The cell-centered momentum is pre-
dicted using the convective, viscous, and pressure-gradient terms at the 
present time step. The predicted value of the momentum is then projected 
such that the continuity equation is satisfied.

Figure 6.2 shows instantaneous contours of the velocity, temperature, 
mixture fraction, and progress variable, respectively. Due to the high air/
fuel velocity ratio, a strong central recirculation region is formed in front of 

FIGURE 6.2 Instantaneous contours of streamwise velocity, tempera-
ture, CO mass fraction, and CO2+H2O mass fractions (from the top to 
the bottom) of a gas-turbine engine. (Mahesh et al. 2006; with permis-
sion from ASME.)
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the fuel port. The recirculating combustion products provide a continuous 
ignition source for the relatively cold incoming reactants, thereby stabiliz-
ing the flame. Contours of the velocity magnitude, axial velocity, mixture 
fraction, and progress variable are shown in Figure 6.3. The correspon-
dence between the progress variable and temperature is apparent. Swirl 
is observed to set up a recirculating region downstream of the injector. 
The fuel and air streams disperse radially and their interaction produces 
a lifted flame and an associated increase in temperature. The hot com-
bustion products and recirculation flow sustain the flame, while the cold 
dilution jets interact with the combustion products to noticeably decrease 
the temperature. Figure 6.4 shows a snapshot of the region immediately 
downstream of the injector, where particle positions corresponding to the 
spray droplets are superposed on contours of velocity magnitude.

Figures 6.3 and 6.4 also indicate the level of geometric complexity; the 
combustor has numerous passages, holes of various sizes and shapes, swirl-
ers, and obstacles in the flow path. The combustor chamber is fed by three 
coaxial swirlers and several dilution holes. The inlet air passes through 
the prediffuser and follows two paths; the main stream flows through the 
swirlers and enters the chamber, while the secondary stream is diverted to 

FIGURE 6.3 Instantaneous contours of velocity magnitude (top left), 
streamwise velocity (top right), mixture fraction (bottom left), and 
CO2+H2O mass fractions (bottom right) of a gas-turbine engine. (Mahesh 
et al. 2006; with permission from ASME.)
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the outer diffusers and enters the combustor through the dilution holes. 
The computations include the effects of flow bleed and transpiration, 
whose values are specified as boundary conditions. A hybrid unstructured 
grid of approximately 1.9 million hexahedral, tetrahedral, and pyramid 
elements was used to perform the simulations. After a statistically stable 
gas-phase flow was obtained, fuel was then respecified as liquid. The liquid 
fuel emerges as a conical spray, which breaks up and evaporates down-
stream of the injector. Clearly, the LES calculation of Mahesh et al. (2006) 
is a very complex one, involving the interactions between complex geom-
etry, multiphase flow, and chemical reactions.

The reacting flows encountered in gas-turbine combustors have also been 
investigated by many other researchers using LES, for example, di Mare et al. 
(2004), who used LES to predict temperature and species concentrations in 
a model can-type gas-turbine combustor (Rolls-Royce Tay) operating in the 
nonpremixed combustion regime. Two computational cases were performed: 
Case I for a nondetailed swirl burner configuration and Case II for a detailed 
swirl burner configuration. Although the governing equations obtained by 
the density-weighted filter have a form similar to those of compressible flows, 
the solver is essentially an incompressible flow solver where the pressure was 
assumed to be thermodynamically constant based on the consideration that 
the Mach number is low in gas-turbine combustors. The time-dependent 
Navier–Stokes equations were solved for the Cartesian velocity components 
in a boundary conforming curvilinear coordinate system. A four-step second-
order time-accurate approximate factorization method was applied to deter-
mine the pressure and ensure mass conservation in conjunction with a Rhie 
and Chow (1983) pressure smoothing technique to prevent even-odd node 

(a) (b)

FIGURE 6.4 Gas turbine sector geometry (left) and instantaneous position 
of fuel spray superposed on contours of temperature from LES (right) of a
gas-turbine engine. (Mahesh et al. 2006; with permission from ASME.)
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uncoupling of the pressure and velocity fields. Standard second-order accurate 
numerical schemes in space and time were used. The subgrid scale stresses 
have been modeled by adopting the standard Smagorinsky–Lilly model. The 
computational mesh is shown in Figure 6.5, indicating the complex geometry 
of the physical problem.

Reynolds-averaged results were presented by di Mare et al. (2004). In 
Figures. 6.6 and 6.7, the differences between the flow topologies predicted 
in Cases I and II are particularly noticeable. In both instances it can be 
observed that the central core circulation interacts with the impinging 
primary jets, which drive the backflow in the primary region. A substan-
tial amount of fluid is then pushed toward the wall, feeding a secondary 

Swirler and Fuel Injectors

(a)

Primary Jets

Dilution Jets

Discharge Nozzle

   (b)

FIGURE 6.5 The computational mesh (left) and the fitted fuel injector grid 
(right) of a model gas-turbine combustor. (di Mare et al. 2004; with per-
mission from Elsevier Science Ltd.)

(a)    (b)

FIGURE 6.6 Reynolds averaged flow field: streamlines in the horizon-
tal midplane of a model gas-turbine combustor, Case I (left) and Case II 
(right). (di Mare et al. 2004; with permission from Elsevier Science Ltd.)
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recirculation region. However, in Case I a smaller circulation is estab-
lished above the fuel/air inlet. Its formation was believed to be associated 
with the approximate representation of the geometry whereby the 90° 
conical fueling device was replaced by a plain wall, thus approaching a 
bluff-body configuration. The presence of this additional toroidal circula-
tion sensibly alters the flow configuration in the primary zone. The flow 
field downstream of the primary jets, however, is not influenced by the 
changes in the geometrical description of the fuel injector and the swirler 
exit conditions. In particular, the impingement region of the primary jets 
at the center of the combustor is clearly shown in Figure 6.8. The rotating 
core at the center of the combustor is an artifact of the averaging process 
as the location of jet impingement point varies with time. In Figure 6.8, 

(a)    (b)

FIGURE 6.7 Reynolds averaged flow field: streamlines in the vertical mid-
plane of a model gas-turbine combustor, Case I (left) and Case II (right). 
(di Mare et al. 2004; with permission from Elsevier Science Ltd.)

(a)  (b)

FIGURE 6.8 Reynolds averaged flow field of a model gas-turbine combustor, 
primary port cross-section (left) and dilution port cross-section (right) of 
Case I. (di Mare et al. 2004; with permission from Elsevier Science Ltd.)
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a slight asymmetry in the penetration of the jets can also be identified. 
From the results of di Mare et al. (2004), it is evident that LES is able to 
reveal the complex flow patterns in gas-turbine combustors. In particu-
lar, di Mare et al. (2004) observed that an accurate description of the inlet 
section of the combustor plays a fundamental role in the prediction of the 
fuel placement and, hence, of the temperature distribution in the primary 
region of the gas turbine combustor.

B. LES of Separated Flows over a Backward-Facing  
Step (Dejoan and Leschziner 2004)

Separated flow behind a backward-facing step is a classical flow in CFD with 
practical relevance. In this flow configuration, the flow develops a separated 
shear layer that borders a recirculation zone behind the step. In the context 
of flow control using unsteady perturbations, Dejoan and Leschziner (2004) 
performed large-eddy simulation of periodically perturbed separated flows 
over a backward-facing step. The perturbation is provoked by the injec-
tion of a slot jet at zero-net-mass-flux, forming a synthetic jet and locat-
ing uniformly along the spanwise edge at which separation occurs. Due 
to the existence of this unsteady perturbation, the traditional CFD based 
on the RANS modeling approach was regarded as inappropriate. In LES 
performed by Dejoan and Leschziner (2004), attention focused on one jet- 
forcing frequency, at a nondimensional frequency or Strouhal number of 
0.2, for which experimental data showed the perturbation to cause the larg-
est reduction in the time-mean recirculation length.

The geometry of the flow simulated is shown in Figure 6.9. In the sim-
ulations performed, the inlet stream was turbulent and fully developed 
at the step with a Reynolds number Re ,3700 which was based on the 
maximum inlet velocity and step height. Two flows were simulated: one 
without injection and the other one with a slot jet that is injected at the 
step at 45  into the flow across the entire span through a 1-mm slit at a 

2h

h
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vj Uc fet

FIGURE 6.9 Schematic of the backward-facing-step flow. (Dejoan and 
Leschziner 2004; with permission from Elsevier Science Ltd.)
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sinusoidal velocity, as indicated in Figure 6.9. The inlet conditions were 
generated by a precursor simulation for a fully developed channel flow 
in a periodic domain at the appropriate Reynolds number. At the outlet, 
the convective outflow condition was used. The domain downstream of 
the step is covered by a mesh of 96 80 32 cells, while the inlet chan-
nel is covered by a separate mesh of 96 40 32 cells, leading to the total 
number of cells of around 0.4 million with fine grid located in the step 
and injection region. The mesh size used in the simulation was use-
fully analyzed in terms of wall unit and the Kolmogorov length scale by 
Dejoan and Leschziner (2004). The analysis showed that the cell-aspect 
ratios are, typically, / / . / /1 5 28 20  at the wall and 4 5 28 20. / /  in 
the shear layer. Figure 6.10 shows the ratio between a mesh size indica-
tor ( ) /1 3 and the Kolmogorov length scale ( / ) /3 1 4  along 
several constant /  and /  lines, where the dissipation rate used in 
the estimation of the Kolmogorov length scale was obtained from the 
turbulence-energy budget. This analysis showed that the cutoff of the 
subgrid scales lies close to the dissipative part of the wave-number 
range. Subgrid scale processes were represented by means of either the 
Smagorinsky model with van Driest damping or the wall-adapting local-
eddy viscosity (WALE) model of Ducros et al. (1998). Significant differ-
ences between the statistical properties of the solutions including the 
second moments were not observed from these two SGS models.

y/h

x/h = 
x/h = 
x/h = 
x/h = 

FIGURE 6.10 Ratio of the cell size to the Kolmogorov scale along various 
grid lines for the unperturbed flow. (Dejoan and Leschziner 2004; with 
permission from Elsevier Science Ltd.)
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In the LES calculations performed by Dejoan and Leschziner (2004), the 
computational scheme used is a general multiblock finite volume procedure 
with nonorthogonal-mesh capabilities. The finite volume scheme is second-
order accurate in space, using central differencing for advection and diffu-
sion. Time-marching is based on a fractional-step method, with the time 
derivative being discretized by a second-order backward-biased approxi-
mation. The flux terms are advanced explicitly using the Adams–Bashforth 
method. The provisional velocity field is then corrected via the pressure gra-
dient by a projection onto a divergence-free velocity field. In the solution 
procedure, the pressure is computed as a solution to the pressure-Poisson 
problem by means of a partial-diagonalization technique as described by 
Schumann and Sweet (1988) and a multigrid algorithm operating in con-
junction with a successive-line over-relaxation scheme.

Dejoan and Leschziner (2004) reported results for time-averaged 
and phase-averaged velocity and Reynolds stresses, obtained from their 
LES calculations. Profiles of Reynolds stresses are shown in Figure 6.11, 
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FIGURE 6.11 Time-averaged Reynolds stresses at different streamwise loca-
tions downstream of the step for the unperturbed and perturbed flows. 
(Dejoan and Leschziner 2004; with permission from Elsevier Science Ltd.)
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together with the corresponding experimental data for comparison. The 
most striking feature in the Reynolds stress profiles is the significant 
increase in turbulence activity provoked by the injection in the shear 
layer: close to the step, the lateral normal stress has increased by a fac-
tor 3, while the shear stress has risen by a factor 2. These increases are, 
qualitatively, consistent with the substantial reduction in recirculation 
length, since the injection provokes a much higher transport of momen-
tum and hence more rapid recovery. Another striking feature is the sub-
stantial increase in the turbulence activity within the recirculation zone, 
due to the formation of significant unsteady features below the shear 
layer associated with the “flapping” of that layer, which can be identi-
fied from the phase-averaged results. In addition to the time-averaged 
results, an overall view of the flow periodic behavior is indicated in 
Figure 6.12, which shows contours of the phase-averaged velocity and 
pressure fluctuations at four phase locations separated by /2 . Both the 
stream function and pressure fields show that periodicity in the per-
turbation produces large-scale vortices below the separated shear layer. 
The overall picture thus presented is one in which the shear layer is 
“flapping,” a process related to the interaction of the large-scale vortical 
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FIGURE 6.12 Phase-averaged stream function and phase-averaged pressure 
fields in the reattachment region with negative pressure contours identi-
fied by dashed lines and positive pressure contours identified by solid lines. 
(Dejoan and Leschziner 2004; with permission from Elsevier Science Ltd.)
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structures with the wall around the reattachment zone. The simulations 
provide clear indications that the high level of sensitivity to the pertur-
bation at the Strouhal number considered is due to a strong interaction 
between shear-layer instabilities and shedding-type instabilities induced 
by the interaction of large-scale structures developed downstream of the 
step with the wall, causing the shear layer to flap. The LES calculations 
by Dejoan and Leschziner (2004) clearly indicate that LES is capable of 
revealing the physics of flow unsteadiness.

II.  SUBGRID SCALE MODELING  
OF INCOMPRESSIBLE FLOWS

A. Subgrid Scale Modeling

Subgrid scale (SGS) modeling is the most distinctive feature of LES. The 
SGS Reynolds stress in LES is due to the filtering or local average of the 
flow field, unlike the Reynolds stress in RANS, which is due to a time or 
ensemble average. When a relatively fine mesh is used, the SGS kinetic 
energy is a small part of the total flow kinetic energy; therefore, model 
accuracy becomes less crucial in LES than in RANS computations where 
the turbulent energy can be a significant part of the total flow energy and 
does not depend strongly on the mesh used in the computation. In LES, 
the governing equations are spatially filtered rather than time or ensemble 
averaged. Explicit account is taken of flow structures larger than the filter 
width, while the influence of unresolved scales is modeled. In LES, it is 
essential to define the quantities to be computed precisely as in the RANS 
approach. To do this it is essential to define a field that contains only the 
large-scale components of the total field. In LES, a spatial filter is applied 
to the equations of motion so that motions with scales less than the filter 
width do not have to be resolved by the computational mesh. The spatial 
filter of a function ( , )  is defined as its convolution with a filter 
function, , according to

 
( ; ( )) ( , ) 3

 
(6.1)

In Equation (6.1), the integration is carried out over the entire flow domain 
. The filter function has a width , which is a function of the three- 

dimensional location  and may vary with position. A number of different 
filter kernels ( ; ( ))  may be used, in the form of a localized function 
that is large only when  and  are not far apart. When the Navier–Stokes 
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equations are filtered, one obtains a set of equations very similar in form to 
the RANS equations. For an incompressible flow, the filtered Navier–Stokes 
equations used in LES contain a term . Since , a modeling 
approximation for the difference between the two sides of this inequality 

must be introduced. In the context of LES,  
is called the SGS Reynolds stress. It plays a role in LES similar to the role 
played by the Reynolds stress in RANS models but the physics that it mod-
els is different. Similar to the unknown Reynolds stress in RANS approach, 
the SGS Reynolds stress is an unknown and needs to be modeled using SGS 
models so that the governing equations are a closed set.

The justification for LES is that the larger eddies contain most of the 
energy, do most of the transporting of conserved properties, and vary 
most from flow to flow; the smaller eddies are believed to be more uni-
versal and less important and should be easier to model. It is hoped that 
the SGS Reynolds stress can be more readily modeled due to the univer-
sality involved. In RANS modeling, however, the Reynolds stress can 
vary significantly from flow to flow and from one part of the flow field 
to another, which could lead to severe modeling inaccuracies. The SGS 
Reynolds stress in LES and the Reynolds stress in RANS are physically 
and numerically different. The SGS Reynolds stress in LES is due to a 
local average or filtering of the complete field, while the Reynolds stress 
in RANS is due to a time or ensemble average. In most the cases, the SGS 
energy is a much smaller part of the total flow than the RANS turbu-
lent energy so model accuracy may be less crucial in LES than in RANS 
computation.

As described in Chapter 1, the most commonly used subgrid scale 
model is the one proposed by Smagorinsky (1963), based on the Boussinesq 
hypothesis or assumption (Boussinesq 1877), which marked the begin-
ning of LES. It is an eddy viscosity model, given as

 

1
3

2
 

(6.2)

where  is the resolved strain rate tensor,  is the Kronecker delta, and 
is the eddy viscosity. The well-known Smagorinsky–Lilly model is the 

direct equivalent of Prandtl’s mixing length model used in statistical tur-
bulence modeling. The natural choice in LES for the length scale is the 
filter width , and the corresponding choice for the velocity scale is | |, 
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where 2  is a measure of the velocity gradient. Correspondingly, 
the eddy viscosity in Equation (6.2) can be given by

 ( ) | |2
 (6.3)

where  is the so-called Smagorinsky constant. As discussed by Geurts 
(2004),  = 0.1 is the most commonly used value although a value of  = 0.17 
was initially put forward for homogeneous isotropic turbulence. In a three-
dimensional LES, the filter width is often determined by the local mesh size as 

( ) /1 3  for a Cartesian grid.
In the Smagorinsky model, both the length scale and velocity scale are 

prespecified. The model does not take into account the local flow proper-
ties, which may cause problems in a complex geometry domain where the 
flow may experience significant spatial changes. To allow a closer adap-
tation of the eddy viscosity to local flow properties, the analogue of the 
one- or two-equation models used in the RANS approach or the statisti-
cal turbulence modeling may be considered, as discussed by Ghosal et al. 
(1995). For instance, in one-equation models, only the length scale, which 
can be conveniently taken as the filter width in LES, is prespecified and the 
velocity scale can be taken as  where the turbulent kinetic energy  is 
determined from a separate transport equation. Such a -equation model 
was also proposed by Menon et al. (1996) and used by several research-
ers (e.g., Valentino et al. 2007) in the LES of transient gas jets and sprays 
under diesel conditions. In a -equation SGS model, the eddy viscosity can 
be given by

  (6.4)

In Equation (6.4),  is a model constant.
Since most of the practical problems are of complex geometry, SGS 

models for complex geometries are of particular importance. Over the 
last two decades, advances have been made in SGS modeling that are par-
ticularly appropriate for LES in complex geometries. Complex flows usu-
ally contain multiple flow regimes such as wall boundary layers and flow 
separations. It has been demonstrated that models with a fixed coefficient 
require tuning of their coefficients in each flow regime. The dynamic 
modeling approach (e.g., Germano et al. 1991; Moin et al. 1991; Ghosal 
et al. 1995) does not suffer from this limitation because the model coef-
ficient is a function of space and time, and is computed rather than 
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prescribed. In addition, it has the proper limiting behavior near walls 
without ad hoc damping functions and behaves appropriately in the 
transition regions. These are all very important features for LES in com-
plex domains. There are other SGS models intended for LES for complex 
geometries; for example, Domaradzki and Loh (1999) used extrapolation 
from the resolved scales to subgrid scales to construct the subgrid scale 
velocity fluctuations and stresses. The model has an adjustable param-
eter that should be possible to compute dynamically, thereby making the 
model suitable for complex geometries. Hughes et al. (2001) have also 
shown that better results are obtained if the governing equations for LES 
are split into the large- and small-scale equations, and the eddy-viscosity 
model is applied only to the small-scale equations. The extension of this 
approach to complex geometry appears to be straightforward with a vari-
ational formulation as proposed by Hughes et al. (2001).

The dynamic Smagorinsky model as discussed by Germano et al. (1991) 
and Moin et al. (1991) is useful to LES of complex geometries. It can be 
extended to unstructured grids, which was used in the LES calculations 
by Mahesh et al. (2006). For the eddy viscosity given in Equation (6.3), 
application of the dynamic procedure using the least-squares approach 
described by Lilly (1992) yields the following expression:

( ) ,2 1
2

with � 	 	
	

	� 	�
2

  
(6.5)

In Equation (6.5), 	 represents a test filter, which is required by the dynamic 
procedure, and the ratio of test to grid filter widths 	 /  is commonly 
assumed to be 2 (Mahesh et al. 2004). In a finite volume approach, the fil-
ter width can be defined as 1 3/  with  denoting the element volume, 
which yields a filter width of ( ) /1 3  for a Cartesian grid.

Near-wall flows are always encountered in complex geometries and are 
difficult for the SGS model as the flow may be laminar and transitional 
and may develop deterministic near-wall structures. Ducros et al. (1998) 
proposed a wall-adapting local eddy-viscosity (WALE) model, which was 
used in the LES calculations performed by Dejoan and Leschziner (2004). 
Compared to the standard Smagorinsky model, the WALE model repro-
duces the cubic wall-asymptotic behavior of the subgrid scale viscosity and 
gives lower values of this viscosity. Nevertheless, SGS modeling of near-
wall flows is particularly challenging since SGS models were not designed 
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to account for the highly deterministic near-wall structures. As discussed 
in Chapter 2, the RANS approach in the near-wall region is often adopted, 
leading to hybrid LES–RANS approaches. There were efforts to develop a 
dynamic approach to the near-wall flow modeling. For instance, Wang and 
Moin (2002) used the RANS approach in the near-wall region of Balaras 
et al. (1996), but incorporated a new dynamic approach to adjust the model 
coefficient. The basic rationale for the adjustment is that when a RANS-
type eddy viscosity is used in the wall layer equations, which includes non-
linear convective terms, its value must be reduced so that the eddy viscosity 
would account for only the unresolved part of the Reynolds shear stress. 
In general, a dynamic approach is expected to perform better for complex 
geometries than an SGS model with a fixed model coefficient.

B. SGS Modeling of Reacting Flows

SGS models for complex flows such as reacting flows encountered in com-
bustion applications are more complex than those for nonreacting flows. 
In spite of the huge success of LES in predicting nonreacting flow fields, 
LES of reacting flows is much more challenging. One important reason 
for this is that the chemical reactions in reacting flows may occur at the 
smallest dissipative scales controlled by molecular diffusion. In other 
words, the combustion process occurs at the subgrid level, which has to be 
modeled entirely in LES by the SGS model. This is significantly different 
from the LES of nonreacting flows, where the SGS model represents only 
a small part of the energy containing scales while the major part of the 
energy containing scales are resolved. In a reacting flow, combustion sig-
nificantly changes the fluid dynamic behavior due to the change in tem-
perature, fluid viscosity, density, and fluid composition. In combustion 
applications, chemical reaction and the associated heat release introduce 
fine-scale density and velocity fluctuations that in turn couple the small 
scale events back to the larger fluid-dynamical scales.

There has been a substantial amount of work devoted to LES of react-
ing flows, where the SGS model depends on how the combustion is math-
ematically represented. In principle, the system of governing equations 
for reacting flows could include the transport equations for chemical spe-
cies, according to the assigned reaction mechanism, and energy equation, 
in addition to the Navier–Stokes momentum equations. Compared with 
the governing equations for nonreacting flows, there is not only a dra-
matic increase in the number of equations to be solved, but also presence 
of nonlinear filtered chemical source terms that must be modeled. LES of 



LES of Incompressible Flows n 171

reacting flows is therefore a difficult and computationally expensive task. 
However, various assumptions can be used to simplify the mathematical 
formulation and combustion modeling. For example, with a number of 
fairly benign assumptions—the heat-releasing chemical reaction is infi-
nitely “fast,” the flow is adiabatic, the Prandtl and Schmidt numbers are 
equal, the pressure is thermodynamically constant, etc.—the instanta-
neous major species composition, temperature, and density can be related 
to a strictly conserved scalar quantity, the mixture fraction, as described 
by di Mare et al. (2004). In this way, compared with a nonreacting flow 
system, only one additional equation needs to be solved for the reacting 
flow system, which is the governing equation for the mixture fraction 
containing no reaction source terms. The filtered governing equation for 
the mixture fraction contains an unknown subgrid scalar flux, but can be 
modeled using a gradient transport model involving the subgrid Prandtl/
Schmidt number. This is perhaps the simplest LES formulation and SGS 
modeling for reacting flows.

Compared to turbulent time scales, combustion introduces faster time 
scales, which makes the modeling of reacting flows more challenging 
than that of nonreacting flows. For reacting flows, the multiple time scale 
phenomenon needs to be modeled appropriately. One modeling effort 
applied to LES of combustion, the linear eddy mixing (LEM) model as 
discussed by Menon et al. (1993), is particularly interesting in the context 
of SGS modeling of reacting flows. The LEM model can be applied to both 
incompressible and compressible flows, as discussed by Chakravarthy and 
Menon (2001) and Sankaran and Menon (2005). In the LEM model, the 
physical processes in turbulent combustion are considered as large-scale 
advection and subgrid scale mixing, molecular diffusion, and chemical 
reaction, which can be incorporated together without incurring high 
computational costs. LEM is essentially a two-scale approach. In the LEM 
model, the scalar fields are not spatially filtered along with the other equa-
tions. Instead, a subgrid Eulerian method is combined with a Lagrangian 
LES transport method to evolve the unfiltered scalar fields. Subsequently, 
the LES-resolved filtered species are obtained by ensemble averaging the 
subgrid fields. The numerical implementation of LEM employs a subgrid 
mixing and combustion model within each LES cell in which molecular 
diffusion and kinetics are simulated exactly in a spatial dimension that is 
oriented in the direction of the maximum scalar gradient using a resolu-
tion fine enough to resolve all the scales in the local LES cell. Subgrid stir-
ring by eddies smaller than the grid is implemented as a series of stochastic 
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processes, each of which represents the action of a turbulent eddy on the 
scalar field. Heat release in the subgrid LEM domain results in volumetric 
expansion that is included as an increase in the subgrid volume. As dis-
cussed by El-Asrag and Menon (2007), there are several important features 
in the LEM model. One such feature is that molecular diffusion including 
possible differential diffusion at the small scales is simulated exactly in 
the LEM domain, albeit in the direction of the maximum scalar gradient, 
which is the most critical direction. In a LEM model, finite-rate kinetics 
can also be included without requiring any closure. In addition, the effects 
of turbulent mixing on the subgrid scalar field due to subgrid stirring by 
small-scale eddies, although implemented in a stochastic sense, are explic-
itly incorporated. Within the context of LES of reacting flows, the LEM 
approach can be used to model the small-scale processes ranging from 
the grid resolution down to the Kolmogorov scale or the smallest scales 
related to chemical reaction in reduced dimension, while the large scales 
of the flow are calculated directly from the LES equations of the motion 
with an appropriate coupling procedure.

LES of reacting flows is an area requiring continuous efforts. SGS mod-
els for reacting flows are often complicated by the involvement of multi-
phase flow phenomena, due to the fact that combustion always utilizes 
liquid fuels such as petrol or diesel while the flame is a gas-phase phe-
nomenon. SGS models for complex multiphase flows are very immature. 
There is a lack of well-established SGS models, especially for the interac-
tions between the different phases. There is no SGS model available to date 
that could take into account the subgrid influence of the dispersed phase 
that is locally smaller than the grid size, such as the fine liquid droplets 
or solid particles dispersed in a gas medium, on the resolved scales in the 
gas phase. Clearly more efforts are needed in the area of SGS modeling of 
multiphase reacting flows.

III. NUMERICAL FEATURES: LES ON UNSTRUCTURED  
GRIDS AND IMMERSED BOUNDARY TECHNIQUE  
FOR COMPLEX GEOMETRIES

On the numerical aspects, there are similarities and differences between 
DNS and LES. As discussed in Chapter 1, both DNS and LES have to be 
time-dependent three-dimensional simulations; therefore, they share 
much commonality in the numerical treatment of boundary conditions 
and numerical methods for time integration, as discussed in Chapters 2 
and 3. However, higher-order schemes are more often required in DNS 
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than in LES, both for time integration and spatial discretization. In the 
state-of-the-art DNS, the discretization schemes used are at least fourth 
order, typically sixth and above. In LES, the numerical schemes used are 
normally between second and fourth order. In order to achieve higher 
order of the numerical scheme, finite difference and spectral methods 
are frequently used in DNS. This, however, is achieved at the expense 
of the efficacy in dealing with complex geometries. Consequently, DNS 
has been mainly restricted to simple geometry problems to understand 
the flow physics. On the contrary, the requirement on the numerical 
accuracy in LES can be more relaxed than in DNS, due to the fact that 
fine scales do not need to be resolved in LES. This not only leads to 
the wide use of slightly lower-order numerical schemes in LES such as 
the second-order central differentiation, which is generally less expen-
sive than the higher-order scheme used in DNS, but also leads to wide 
use of finite volume methods that offer significant advantages in dealing 
with complex geometries. Using finite volume methods, computational 
techniques for complex geometries such as unstructured mesh can be 
conveniently implemented. Due to the flexibility offered by the numeri-
cal methods used, LES has been successfully applied to many indus-
trial problems with complex geometries. In the following sections, two 
numerical techniques used in LES of incompressible flow in complex 
geometries are briefly discussed. The first technique was developed by 
Mahesh et al. (2004), using a finite volume method on unstructured 
grids, where the robustness of the method on skewed elements was par-
ticularly addressed. The second example concerns an immersed bound-
ary technique, which is often used in conjunction with both the finite 
difference method and finite volume method for the simulation of flow 
interacting with solid boundaries.

A. LES on Unstructured Grids

In many CFD applications to complex geometries, an unstructured mesh is 
preferred. An unstructured mesh is a tessellation of a part of the Euclidean 
plane or Euclidean space by simple shapes, such as triangles or tetrahedra, 
in an irregular pattern, which can follow the shape of a body with com-
plex geometry much more easily than a structured rectangular mesh. Mesh 
or grid of unstructured type can be used in CFD when the computational 
domain to be analyzed has an irregular shape, which is often encountered in 
practical applications. Mahesh et al. (2004) described a numerical method 
for LES of incompressible flows in complex geometries using a finite volume 
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method based on an unstructured mesh, which was subsequently used in 
the LES of a gas-turbine combustor performed by Mahesh et al. (2006).

Unlike structured grids such as those used in finite difference schemes, 
unstructured grids require a list of the connectivity that specifies the order 
in which a given set of vertices make up individual elements. Figure 6.13 
shows the staggered positioning of flow variables on an unstructured mesh 
of tetrahedra (Mahesh et al. 2004). In a tetrahedral element, there are four 
nodes, four faces, and five edges. The pressure and any scalars are stored 
at the circumcenter of the tetrahedron. The velocity component normal to 
each face  is stored at the circumcenter of each face. The correspondence 
to the classical staggered positioning of variables on structured grids is 
apparent. As pointed out by Mahesh et al. (2004), the convection term can 
be computed in velocity-vorticity (rotational) form on an unstructured 
mesh with staggered flow variables. However, the formulation has a few 
limitations. It is restrictive in that pressure or any other scalar is stored 
at the circumcenter of the triangular elements. This restricts the grid to 
elements whose circumcenter lies within them. Highly skewed elements 
can also cause problems since the circumcenter lies outside the element. 
Although projection of the velocity field is still possible in this situation, 
the inaccurate computation of the pressure gradient is not favorable. In 
addition, skewed elements render computations of the vorticity inaccu-
rate. Also, the algorithm is restricted to tetrahedra. Although tetrahedra 
are very suitable for mesh with very complex geometries, Mahesh et al. 
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FIGURE 6.13 The staggered positioning of variables on an unstructured 
mesh of tetrahedra. (Mahesh et al. 2004; with permission from Elsevier 
Science Ltd.)
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(2004) suggested that hexahedral elements are preferable due to the fact 
that hexahedral elements are more easily aligned with flow gradients such 
as boundary layers and it takes fewer hexahedral elements to fill space 
than comparable tetrahedra. In order to address the problems of the stag-
gered rotational formulation, Mahesh et al. (2004) developed an alterna-
tive approach that can be implemented for hybrid grids of tetrahedra, 
hexahedra, wedges, and prisms. The basic idea was that the robustness 
of the method is determined essentially by the numerical discretization 
of the convection term, while robustness on skewed grids is determined 
by both discretization of the convection and the pressure-gradient terms. 
Discrete energy conservation (Mahesh et al. 2004) ensures that the flux of 
kinetic energy has contributions only from the boundary elements, which 
makes the solution robust without the use of numerical dissipation. For 
incompressible flows, discrete energy conservation refers to the fact that 
the convective and pressure terms in the discrete kinetic energy equation 
are expressible in divergence form, which is preferred for an incompress-
ible solver. As stated by Mahesh et al. (2004), if the computational grid is 
sufficiently fine such as that used in a DNS where viscous dissipation is 
resolved on the grid, then discrete energy conservation is not essential. 
However, if the grid is not fine enough to resolve viscous dissipation such 
as that used in an LES, then discrete energy conservation is essential to 
obtain stable, accurate solutions.

In Mahesh et al. (2004), the Cartesian velocity components and pres-
sure are stored at the centroids of the cells, while the face-normal veloci-
ties are treated as independent variables that are stored at the centroids of 
the faces. The methods can be outlined as follows. For a passive scalar , 
the spatial discretization of the convective term can be illustrated by the 
following equation:

 
( ) 0

 
(6.6)

Using / 0  for an incompressible flow and multiplying Equation 
(6.6) by  yields

 

2
2 0( )

 
(6.7)

Equations (6.6) and (6.7) mean that conservation of  implies conserva-
tion of 2. However, discretely, conserving  does not automatically imply 
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conservation of 2. Integrating Equation (6.6) over a cell and using the 
divergence theorem yields

 
0

 
(6.8)

In Equation (6.8),  and  denote the value of the scalar and the vol-
ume of a control volume ,  is the face area, and n denotes the face-
normal velocity in the direction of the outward normal at each face. 
Note that the incompressibility condition requires that 0. 
Also,  is discretely conserved regardless of how  is computed. 
However, 2 is discretely conserved only if the values of  at the faces 
are calculated as a simple arithmetic mean of the values at the two cells 

 and  that have that particular face in common (Mahesh et al. 
2004); that is,

 2  
(6.9)

The discrete equation for 2 is obtained by multiplying Equation (6.8) with 
 to obtain

 
2

0( )
 

(6.10)

Using 0, Equation (6.10) can be rewritten as

 

2
0

 
(6.11)

Summation of Equation (6.11) over all the cells in the computational 
domain yields

 

2
0

 
(6.12)
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The contribution from the interior faces cancels out in the second term 
to yield

 

2
0

 
(6.13)

In Equation (6.13), if the boundary conditions for the scalar  are speci-
fied on the boundary faces,  can be defined as 2 .

As discussed by Mahesh et al. (2004), the interpolation   
(   ) 2 in Equation (6.9) is second-order accurate on uniform 
grids. On nonuniform grids, the interpolation could be weighted 
by the distances between the faces and the neighboring volumes. 
However, such weighted interpolation compromises the discrete 
energy conservation, which may lead to unstable solutions. On the 
contrary, the symmetric interpolation is both energy conserving 
and stable for arbitrarily nonuniform meshes, which are proper-
ties of prime importance for obtaining meaningful solutions in 
very complex geometries where mesh irregularities cannot always 
be avoided. In deriving Equation (6.11), 0 was utilized 
since an incompressible f low was considered. The Poisson equa-
tion for pressure enforces this incompressibility constraint. If the 
Poisson equation is solved using direct methods, then the discrete 
divergence will be zero to machine accuracy. However, it is common 
to solve the Poisson equation iteratively; the discrete divergence in 
each computational cell is therefore determined by the tolerance to 
which the Poisson equation is converged. This has implications for 
discrete energy conservation. In this case, Equation (6.13) may be 
written as

2
2

 
(6.14)

Note that even if the discrete divergence in each cell may be small, the 
collective contribution when summed over all the volumes in the com-
putational domain can be significant. To avoid this cumulative effect, 

0 can be used when  is being advanced; that is, instead 
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of using Equations (6.8) and (6.9) to advance , the following equation 
can be used:

 
2

0
 

(6.15)

The above approach can be extended to the Navier–Stokes equations 
by computing the convection term in a similar manner. In particular, 
for , this result indicates that there is no production of kinetic 
energy in the computational domain due to the numerics in the absence 
of time-discretization errors. A predictor–corrector formulation was 
derived by Mahesh et al. (2004) that emphasizes energy conservation for 
the convection and pressure terms on arbitrary grids. Accordingly, the 
cell velocities  and the face-normal velocities  defined at the center 
of the face are treated as essentially independent variables. Mahesh et al. 
(2004) used a predictor–corrector formulation along with explicit time-
advancement given as

 

ˆ
[ ( ) ( ) ]1

2
3 1

 
(6.16)

In Equation (6.16),  and  denote the nonlinear and viscous terms, 
and the superscript  represents the time step to be advanced, respec-
tively. The predicted values of  are used to obtain predicted values for 
the face-normal velocities:

 
ˆ

ˆ ˆ1 2

2  
(6.17)

In Equation (6.17), ˆ  points from the volume 1 to 2 . The predicted face-
normal velocities are then projected using

 

ˆ

 
(6.18)

The divergence-free constraint requires that 0.  From Equation 
(6.18), the Poisson equation for pressure in integral form can be given as

 

ˆ

 
(6.19)
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The pressure Poisson equation given in Equation (6.19) can be solved itera-
tively. Once  is obtained, the Cartesian velocities are updated as

 

1 ˆ

 
(6.20)

As pointed out by Mahesh et al. (2004), the method of computing 
/ affects the robustness of the solution on highly skewed grids. The 

computation of pressure always plays a crucial role in an incompressible 
flow solver. In complex geometry problems such as a gas-turbine combus-
tor, the presence of skewed elements is inevitable. An obvious approach to 
computing the gradient at cell centers is to use the gradient theorem

 

1

 
(6.21)

However, Equation (6.21) may lead to unstable solutions when applied 
on the highly skewed grids. This lack of robustness was understood by 
Mahesh et al. (2004) as from the contribution of the pressure gradient 
to the discrete kinetic energy equation. The contribution of the pressure 
gradient to discrete kinetic energy is not conservative in a nonstaggered 
grid formulation. Mahesh et al. (2004) derived a procedure for the evalu-
ation of the pressure gradient in advancing the Cartesian velocities at 
the centers of the volumes. The approach to make the pressure-gradient 
term as energy conserving as possible is to satisfy this relation in a least-
squares sense, that is, by minimizing

  
(6.22)

This minimization allows /  to be computed in terms of the nearest 
neighbors and to be a local operation. Mahesh et al. (2004) found that the 
least-squares formulation was imperative to obtain robust, accurate solu-
tions; unstable solutions were obtained in its absence.

B. LES with the Immersed Boundary Technique

Complex geometry treatment is at the center of the applications of LES to 
engineering problems. In the finite volume method by Mahesh et al. (2004), 
unstructured grids are used to approximate the complex flow boundaries 
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where the grid lines or element surfaces are made to be aligned with the 
body surface, or as close as possible. There is also another numerical tech-
nique frequently used for complex geometries—the immersed boundary 
(IB) technique, as described by Moin (2002) in the context of LES for com-
plex flows. The IB technique allows the computation of flow around com-
plex objects without requiring the grid lines to be aligned with the body 
surface. The governing equations are solved on an underlying grid, which 
in principle can be structured or unstructured and which covers the entire 
computational domain without the bodies; no-slip boundary conditions 
are enforced via source terms or imaginary body forces in the equations, 
as described by Verzicco et al. (2000). 

The IB technique can be incorporated into structured LES codes written 
in cylindrical, Cartesian, and curvilinear coordinates with and without 
zonal or mesh adaptation capability. In principle, it can also be incorpo-
rated into unstructured grids used in finite volume methods. The basic 
idea of the IB technique is given as follows.

In the immersed boundary technique, a boundary body-force term  is 
added to the incompressible equations to yield

 

1 { [ ( ) ]}�
 

(6.23)

Equation (6.23) is simply the filtered Navier–Stokes momentum equa-
tions, equivalent to Equations (1.18)–(1.20) given in Chapter 1. In Equation 
(6.23), the effective viscosity �  is the sum of the molecular viscosity and 
the subgrid scale viscosity.

The time-discretized version of Equation (6.23) can be written as

 
1 ( )  (6.24)

In Equation (6.24),  represents the computational time step, while the 
right-hand-side RHS contains the pressure and the nonlinear viscous 
terms, and the superscript denotes the time-step level. In the IB technique, 
in the region where we wish to mimic the solid body, in order to impose 

1 on the body with  representing the velocity of the body, the 
forcing term  must satisfy

  
(6.25)
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In general, the surface of the region where 1  does not coincide 
with a grid line or surface. The value of  at the node closest to the surface 
but outside the solid body is linearly interpolated between the value that 
yields  on the solid body and zero in the interior of the flow domain 
where has to vanish. This interpolation procedure is consistent with a 
centered second-order finite difference approximation, and the overall 
accuracy of the scheme remains second order.

To facilitate the application of the IB technique to complex configura-
tions, a geometry preprocessor may be adopted in the solver. As a first 
step, the computational cells can be separated into “dead” (inside the 
body), “alive” (outside the body), and interface (partially inside). An auto-
matic grid-refinement procedure can also be developed to improve the 
representation of the body on the underlying grid, as described by Moin 
(2002). In order to better represent the complex geometry, mesh adapta-
tion capability may be implemented in the basic underlying CFD code. 
Presently, most LES codes do not have such a capability. Francois et al. 
(2004) used a multigrid technique with the IB technique in their com-
putations of multiphase flows, which involves coupled momentum, mass, 
and energy transfer between moving and irregularly shaped boundar-
ies, large property jumps between materials, and computational stiffness. 
Their immersed boundary technique is a combined Eulerian–Lagrangian 
method that was used to investigate the performance improvement by 
using the multigrid technique in the context of the projection method. 
They found that the multigrid technique speeds up the computation and 
furthermore the impact of the density ratio on the CPU time required is 
substantially reduced, but the impact of the viscosity ratio does not play a 
major role in the convergence rates.

There are recent developments in the IB technique. An IB technique for 
the simulation of flow interacting with a solid boundary was recently pre-
sented by Su et al. (2007). The formulation employs a mixture of Eulerian 
and Lagrangian variables, where the solid boundary is represented by 
discrete Lagrangian markers embedding in and exerting forces on the 
Eulerian fluid domain. The interactions between the Lagrangian mark-
ers and the fluid variables are linked by a simple discretized delta func-
tion, as described by Su et al. (2007). The numerical integration is based 
on a second-order fractional step method under the spatial staggered 
grid framework. Based on the direct momentum forcing on the Eulerian 
grids, a new force formulation on the Lagrangian marker is proposed, 
which ensures the satisfaction of the no-slip boundary condition on the 
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immersed boundary in the intermediate time step. This forcing procedure 
involves solving a banded linear system of equations whose unknowns 
consist of the boundary forces on the Lagrangian markers.

A review of the IB methods was provided by Mittal and Iaccarino (2005). 
The IB method is often implemented together with the ghost-cell method. 
The ghost-cell method is an IB method based on a finite difference or a finite 
volume discretization. It introduces the presence of the immersed boundary 
by locally adapting the numerical fluxes using various interpolation tech-
niques. For this purpose, virtual or “ghost” cells with an interpolated flow 
state are introduced. The boundary condition on the IB is enforced through 
the use of “ghost” cells, which are defined as cells in the solid that have at 
least one neighbor in the fluid. Current research in IB methods is focused 
toward improving their accuracy and efficiency. Using adaptive grid refine-
ment with IB methods is also promising, especially for high Reynolds num-
ber flows. However, using local refinement increases the complexity of the 
algorithm and also begins to blur the line between IB methods and unstruc-
tured grid methods. As commented by Mittal and Iaccarino (2005), IB 
methods will see increased applications in complex turbulent flows, fluid-
structure interaction, and multimaterial and multiphysics simulations.
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7C H A P T E R  

LES of Compressible Flows

As discussed in chapter 5, compressible flows represent a broad 
range of fluid flows of relatively high speeds. Although compressibil-

ity in liquid fluids is often negligible, there is a situation where the pressure 
variation in the flow field is large enough to cause substantial changes in 
the density of the fluid. This is known as the cavitation phenomenon, where 
the pressure variations in the flow are large enough to cause a phase change. 
For liquids, whether the incompressible assumption is valid depends on 
the fluid properties, particularly the pressure and temperature of the fluid 
and how close they are to the critical pressure and temperature. However, 
the majority of the practical compressible flows are gas flows. For flow of 
gases, the compressibility needs to be taken into account at Mach numbers 
above approximately 0.3. Such compressible flows are of great importance 
to aerospace engineering and many other high-speed flow applications.

Many high-speed flows have Reynolds numbers too high for DNS to be 
a viable option, given the state of computational power for the next few 
decades. In many aeronautical applications, DNS remains impossible for 
practical applications. For instance, the complete aerodynamic computa-
tion of transport aircraft wings such as those on an Airbus A300 or Boeing 
747 having nominal Reynolds numbers of 40 million (based on the wing 
chord) at flight conditions are well beyond the limit of DNS. Even for a 
small aircraft with a dimension greater than 3 meters, moving faster than 
72 km/h or 20 m/s with a nominal Reynolds number of the flow above 
4 million is out of reach for DNS. In order to solve the entire domain of these 
real-life flow problems or even if only a small part of the flow, RANS, LES, 
and detached eddy simulation (DES) as a combination of RANS and LES 
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are a necessity for the foreseeable future. The main advantage of LES over 
computationally cheaper RANS approaches is the increased level of details 
it can deliver, especially the prediction of flow unsteadiness, which is quite 
important to aerodynamic applications. While RANS methods provide 
“averaged” results, LES is able to predict instantaneous flow characteris-
tics and resolve turbulent flow structures. This is particularly important 
in simulations involving chemical reactions, such as the combustion of 
fuel in an internal combustion engine or an aircraft engine. While the 
“averaged” concentration of chemical species may be too low to trigger a 
reaction, instantaneously there can be localized areas of high concentra-
tion in which reactions can take place. For aeroacoustic predictions, LES 
also offers significantly more meaningful results over RANS since sound 
radiation is essentially the propagation of instantaneous pressure waves. 
Computational aeroacoustic problems require the formation allowing 
compressibility, since sound waves can be found only from the fluid equa-
tions of compressible flows.

As shown in Chapter 1, the governing equations for compressible flows 
are significantly different from those for incompressible flows. Compared 
with LES of incompressible flows (Sagaut 2006), LES of compressible flows 
is receiving increasing attention, but it is still relatively scarce. For com-
pressible flows, the strong coupling between fluid density and other flow 
quantities is a feature that is absent for incompressible flows. A time- or 
ensemble-averaging or spatial filtering of the compressible flow govern-
ing equations using directly the Reynolds decomposition of all the flow 
variables leads to a very complex format of the equations. However, this 
unnecessary complexity can be avoided by using Favre averaging or filter-
ing. For the LES of compressible flows, there can be Favre-filtered Navier–
Stokes equations. Using Favre filtering, the filtered governing equations 
of compressible flows are very similar to those of incompressible flows. 
Consequently, the subgrid scale (SGS) modeling of compressible flows 
becomes very similar to that of incompressible flows. For instance, the 
Boussinesq eddy viscosity hypothesis (Boussinesq 1877) for subgrid-scale 
turbulent stresses can be used, which relates the Reynolds stresses to 
the mean velocity gradients as shown in Equation (6.2) and the subgrid 
scale eddy viscosity can be modeled with an SGS model. There are strong 
links between the SGS modeling of incompressible and compressible flows. 
For instance, the dynamic approach developed by Germano et al. (1991) 
for incompressible flows was successfully extended to compressible flows 
by Moin et al. (1991).
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This chapter is devoted to LES of compressible flows. Similar to 
Chapter 6, some sample LES results for both reacting and nonreacting 
flows are presented first. The SGS modeling, which is the most distinctive 
feature of LES, is then discussed in the context of compressible flows. In 
the discussions on SGS modeling, an important concept in LES, implicit 
large-eddy simulation (ILES), is included in this chapter. ILES has pro-
vided many numerical simulations with an efficient and effective model 
for turbulence. For compressible flows, the capacity for ILES has been 
shown to arise from a broad class of numerical methods with specific 
properties producing nonoscillatory solutions using limiters that provide 
these methods with nonlinear stability. However, it is worth noting that 
ILES is not restricted to compressible flows. As discussed by Rider (2007), 
much of the understanding of ILES modeling has proceeded in the realm 
of incompressible flows. The ILES of compressible flows can be consid-
ered as dominated by an effective self-similarity subgrid model, like the 
incompressible flow. The efficacy of ILES as a model for compressible 
flows was analyzed by Rider (2007), where the model can have several 
limits including the incompressible limit. Finally, it is worth mentioning 
that discussions on numerical features of the spatial discretization and 
temporal integration schemes are omitted in this chapter, because these 
were covered in previous chapters.

I. SAMPLE RESULTS OF LES OF COMPRESSIBLE FLOWS
A. LES of a Ramjet Combustor (Roux et al. 2008)

A ramjet combustor is an essential part of a ramjet engine. As the power 
plant for a high-supersonic vehicle, a ramjet engine consists of three major 
components: inlet, combustor, and nozzle. Unlike a turbofan or turbojet 
engine, the ramjet does not have the compressor or turbine. Air enters the 
inlet, where it is compressed, and then enters the combustion zone, where 
it is mixed with the fuel and burnt. The hot gases are then expelled through 
the nozzle, producing thrust. The operation of the ramjet depends on the 
inlet to decelerate the incoming air to raise the pressure in the combustion 
zone. The higher the velocity of the incoming air, the greater the pressure 
rise is. This is why the ramjet operates best at high supersonic velocities. At 
subsonic velocities, the ramjet is inefficient. The combustion process in an 
ordinary ramjet takes place at low supersonic velocity. At high supersonic 
velocities, a very large pressure rise is developed that is more than suffi-
cient to support operation of the ramjet. Since the inlet has to decelerate 
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high supersonic velocities to low subsonic velocities, large pressure losses 
could occur. The deceleration process also produces a temperature rise. 
At some limiting speed, the temperature will approach the limit set by 
the wall materials and cooling methods. In the past few years, research 
and development have been done on a ramjet that has the combustion 
process taking place at supersonic velocities using a supersonic combus-
tion process. The objective is to reduce the deceleration and the associated 
pressure loss in the inlet and also the temperature rise. This is known as 
scramjet. It should be noted that since large velocities are required to start 
ramjets, another engine system is required to accelerate an aircraft pro-
pelled by a ramjet.

Roux et al. (2008) performed LES of the flow in a side-dump ramjet com-
bustor, which is a two-inlet configuration burning gaseous propane with 
air. Three computational cases were performed, including reacting and 
nonreacting cases. The combustor configuration is shown in Figure 7.1.

The time-dependent compressible Navier–Stokes equations are fil-
tered using a Favre filtering operation yielding the LES equations, which 
include chemical reactions. The governing equations include subgrid-
scale quantities that need to be modeled. The unresolved SGS stresses are 
modeled using the Boussinesq eddy viscosity assumption (Boussinesq 
1877) as given in Equation (6.2). The wall-adapting local eddy-visosity 
(WALE) model of Ducros et al. (1998) and Nicoud and Ducros (1999) 
was chosen to model the SGS viscosity. The parallel LES simulation 
performed by Roux et al. (2008) solves the governing equations using a 
cell-vertex finite volume approximation. The numerical integration uses 
Lax–Wendroff type or Taylor–Galerkin weighted residual central distri-
bution schemes. The Taylor–Galerkin scheme, as described by Colin and 
Rudgyard (2000), provides third-order accuracy on hybrid meshes and 
is particularly adequate for low-dissipation requirements of LES appli-
cations. Time integration is done by a third-order explicit multistage 
Rung–Kutta scheme. Since the ramjet flow contains a choked nozzle, the 
outlet flow is supersonic and no shock capture method is needed.

The mesh used for the numerical simulations contains 1 2 million tet-
rahedra, as shown in Figure 7.2, with local refinement to ensure grid reso-
lution in accordance with the requirements for the LES. The nozzle walls 
are handled as slip walls. All other walls correspond to no-slip adiabatic 
surfaces. At the inlets, the Navier–Stokes characteristic boundary condi-
tions (NSCBC) are used to ensure a physical representation of the acoustic 
wave propagation. The outlet nozzle is included in the LES domain. This 



LES of Compressible Flows n 189

Head End

45°Fuel

50

50

70.7

130

11

970

44.6

116.4

R55.8

161

10
0

55
.8 68

(a)

(b)

Air Inlet

Air Inlet

Fuel
Inlet

Choked
Nozzle

Exit

FIGURE 7.1 Schematic of the experimental ramjet combustor along with 
its dimensions. (Roux et al. 2008; with permission from Elsevier Science 
Ltd.)
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FIGURE 7.2 Three-dimensional view of the ramjet combustor mesh. (Roux 
et al. 2008; with permission from Elsevier Science Ltd.)
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avoids all uncertainties on the acoustic behavior of the outlet boundary, 
which is supersonic and thus well posed mathematically and numerically. 
This is not the case for the air inlet boundary conditions, which must be 
nonreflective to prevent artificial forcing of the acoustic field within the 
domain of computation.

In Figure 7.3, the isosurfaces of axial velocity are shown for the non-
reacting case. The obtained envelope encompasses the two high-velocity 
streams coming from the air inlet ducts, which impact each other within 
the chamber before reaching the two side walls of the ramjet. This isosur-
face is characteristic of crushing jets coalescing into a jet sheet. In this spe-
cific case, the generated high-velocity sheet impacts the vertical walls of 
the combustion chamber. The main recirculation zone is localized near the 
head-end of the combustor and is evidenced by a low value of the velocity 
magnitude isosurface (in light gray). Other recirculating regions are cre-
ated just downstream of the air inlets, on the top and bottom walls of the 
chamber. Two recirculating bubbles also appear within the two airstream 
ducts. These flow patterns are strongly linked to the combustor geometry. 
Indeed, the sudden inclinations of the duct air inlets induce detachment 
points of the injected air flow. Behind these points, small recirculation 
zones diminish the effective flow passage, hence increasing the air veloc-
ity before the air enters the combustion chamber. Similarly, the sudden 
expansion seen by the incoming flow of air when entering the main cham-
ber duct explains the two recirculation bubbles appearing on the top and 
bottom floors of the combustor.

For this cold flow (nonreacting case) configuration, the unsteady tur-
bulent behavior is dominated by the oscillation of the impinging jets. 

X

Z

Y

FIGURE 7.3 Isosurfaces of axial velocity for the nonreacting case of the 
ramjet combustor. (Roux et al. 2008; with permission from Elsevier 
Science Ltd.)
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This highly unsteady feature is illustrated in Figure 7.4, where two snap-
shots are taken at instants when the coalesced jet is deviated toward the 
top and bottom walls of the main chamber (top and bottom subfigures, 
respectively). The actual characterization of such a phenomenon remains 

(a)

(b)
–100 0 100 200 300 400 500

FIGURE 7.4 Instantaneous axial velocity for the nonreacting case in the 
symmetry plane  of the ramjet combustor. (Roux et al. 2008; with permis-
sion from Elsevier Science Ltd.)
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difficult, since acoustic and aerodynamic phenomena have similar time 
scales.

From the LES results, mean flow quantities can be conveniently 
obtained. Figure 7.5 shows an isosurface for a mean-averaged fuel mass 
fraction at 0 15. The pattern of the isosurface evidences the path traveled 
by the fuel from the head-end to the chamber. Hot burned gas pockets and 
combustion products are convected toward the chamber exhaust.

B. LES of Compressible Flows around Cavities (Rubio et al. 2006)

Cavity flows are encountered in a broad range of applications. The phe-
nomenon of flows passing over a cavity occurs in applications, including 
transport systems, aircraft wheel systems, and other aerospace applica-
tions. Rubio et al. (2006) performed a compressible LES of a flow pass-
ing over a cavity for different cavity configurations. The compressible 
viscous Navier–Stokes equations are solved. The governing equations 
include a Favre-filtered part and an unresolved part that is modeled 
with a subgrid-scale model. A Smagorinsky (1963) model with constant 
coefficients is employed while the filter size is set equal to the mesh 
size.

The governing equations are integrated in time using a fourth-order 
explicit Runge–Kutta scheme. Convective and viscous terms are dis-
cretized using second-order schemes. On the walls, isothermal, nonslip, 

FIGURE 7.5 Isosurface of the averaged fuel mass fraction for the reacting 
case of the ramjet combustor. (Roux et al. 2008; with permission from 
Elsevier Science Ltd.)
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no-penetration conditions are used. At the inlet, the characteristic soft 
boundary conditions are used while at the outflow, the subsonic charac-
teristic outflow condition of the NSCBC type is used. A sponge zone is also 
used to eliminate the spurious wave reflections. At the far-side boundary, 
a free boundary condition is applied where the derivatives of the primitive 
variables are set to zero.

Figure 7.6 shows the instantaneous vorticity and pressure contours at 
three different time instants. The vorticity contours show a steady vortex 
or a recirculation zone occupying the rear half of the cavity, indicating 
that the interaction of the shear layer with the flow inside the cavity is very 
weak. The pressure contours allow the identification of what will be the 
directivity of the acoustic field propagated upstream far from the cavity. 
The regions in the cavity with negative values of the pressure fluctuations 

1

0.5

0

–0.5

–1
–1 0

y/
D

1 2 3
x/D

1

0.5

0

–0.5

–1
–1 0

y/
D

1 2 3
x/D

1

0.5

0

–0.5

–1
–1 0

y/
D

1 2 3
x/D

2
1.5

1
0.5

0
–0.5

–1

y/
D

–1 0 1 2 3
x/D

2
1.5

1
0.5

0
–0.5

–1

y/
D

–1 0 1 2 3
x/D

2
1.5

1
0.5

0
–0.5

–1

y/
D

–1 0 1 2 3
x/D

FIGURE 7.6 Evolution of vorticity (left) and pressure fluctuation (right) of 
a rectangular cavity; progressive time instants are shown from top to bot-
tom. (Rubio et al. 2006; with permission from John Wiley & Sons, Ltd.)



194 n Numerical Techniques for Direct and Large-Eddy Simulations

are the result of the swirling movement, leading to the formation of the 
stationary recirculation zone.

Figure 7.7 shows the instantaneous vorticity and pressure contours at 
five different time instants for a lengthened cavity (compared to Figure 7.6). 
The flow is characterized by a large-scale vortex shedding from the cavity 
leading edge. The vortex reaches nearly the cavity size, dragging during its 
formation irrotational free-stream fluid into the cavity. The vortex is then 
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shed from the leading edge and violently ejected from the cavity. The time-
averaged streamlines for both cavity configurations are shown in Figure 7.8. 
For the small-length cavity shown in Figure 7.8(a), the mean flow stream-
lines are almost horizontal along the mouth of the cavity, while they are 
deflected in the lengthened cavity case as shown in Figure 7.8(b).

II.  SUBGRID-SCALE MODELING OF COMPRESSIBLE FLOWS 
AND IMPLICIT LARGE-EDDY SIMULATION (ILES)

A. Subgrid-Scale Modeling of Compressible Flows

For compressible and/or reacting f lows, density is an important variable 
and the density weighted averaging or density weighted filtering plays a 
significant role in RANS turbulence modeling and in LES subgrid-scale 
turbulence modeling. In density weighted Favre averaging, a depen-
dent variable can be decomposed into a mean part �  and a f luctuat-
ing part using a density weighted average as  � , � / , 
where the overbars denote averages using the Reynolds decomposition 
and the auxiliary relations include 0 and � � . Note 
that Favre averaging or filtering does not apply to density itself and the 
pressure by convention. Similar to the Favre averaging in the RANS 
approach, LES for compressible and/or reacting f lows involves the spa-
tial Favre filtering defined as

 
� 1 ( ) ( , ) ( )

 
(7.1)

where  denotes the filter function. Applying the spatial Favre filtering to the 
governing equations for an unsteady three-dimensional compressible and 
viscous flow without body forces, the following equations can be obtained:
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FIGURE 7.8 Time-averaged streamlines for both cavity configurations. 
(Rubio et al. 2006; with permission from John Wiley & Sons, Ltd.)
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The continuity equation,

 

�
0

 
(7.2)

Momentum equations (the Navier–Stokes equations),

 

( ) ( ) ( ,� � � � )

 
(7.3)

The energy equation,
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(7.4)

In Equation (7.4), the Favre filtered total energy per mass unit �  is defined 
as � � �/[( ) ] ( )/ .1 2

In the mathematical description of compressible turbulent flows, the 
application of the filtering operation to the instantaneous set of compress-
ible Navier–Stokes transport equations yields the LES transport equa-
tions, which contain the so-called SGS quantities, ,  and , , that 
need modeling (Saqaut, 2006). The unresolved SGS stress tensors ,  
can be modeled using the Boussinesq assumption (Boussinesq 1877; Pope 
2000; Smagorinsky 1963), given by

 
, ,

1
3
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(7.5)

The SGS heat flux ,  can be modeled as

 

, Pr
�

 
(7.6)

In Equation (7.6), Pr  represents the turbulent Prandtl number. To deter-
mine the turbulent viscosity, a Smagorinsky model can be used, where

 
( ) | | ( )2 2 2� � �

 
(7.7)
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In Equation (7.7),  is the Smagorinsky constant and  is the filter 
width, as they were in Chapter 6.

From the above analysis, it is clear that when Favre filtering is used, the 
SGS turbulence modeling of compressible flows is very similar to that of 
incompressible flows. Dynamic SGS models can also be proposed for LES 
of compressible flows. For example, the dynamic SGS model of Germano 
et al. (1991) was generalized by Moin et al. (1991) for LES of compressible 
flows and the transport of a scalar. The model was applied to LES of decay-
ing isotropic turbulence, and the results are in excellent agreement with 
experimental data and DNS results.

The subgrid scale models for compressible flows were often developed 
based on SGS models for incompressible flows. Erlebacher et al. (1992) 
developed subgrid-scale models for LES of compressible turbulent flows 
based on the Favre filtered equations of motion for an ideal gas. A com-
pressible generalization of the linear combination of the Smagorinsky 
model and scale similarity model, in terms of Favre filtered fields, was 
obtained for the subgrid scale stress tensor (Erlebacher et al. 1992). An 
analogous thermal linear combination model was also developed for the 
subgrid-scale heat flux vector. The two dimensionless constants associated 
with these SGS models are obtained by correlating with the DNS results of 
compressible isotropic turbulence.

B. Implicit Large-Eddy Simulation (ILES)

Implicit large-eddy simulation (ILES) is a relatively new approach to 
LES; it is conceptually different from LES where an explicit SGS model is 
employed. In ILES, the truncation error of the discretization of the con-
vective terms functions as a subgrid-scale model. Therefore, the model 
is implicitly contained within the discretization, and an explicit compu-
tation of model terms becomes unnecessary. ILES combines generality 
and computational efficiency with documented success in many areas of 
complex fluid flow. In general, the SGS model in an LES operates on a 
range of scales, which is marginally resolved by discretization schemes. 
Accordingly, the discretization scheme and the subgrid-scale model are 
linked. One can exploit this link by developing discretization methods 
from subgrid-scale models, or the converse. Approaches where SGS 
models and numerical discretization are fully merged are called implicit 
LES.

Although SGS modeling is the most distinctive feature of an explicit 
LES, an SGS model is not needed in ILES. Hahn and Drikakis (2004) 
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presented a numerical investigation of high-resolution schemes for 
solving the compressible Euler and Navier–Stokes equations in the 
context of ILES, or monotonically integrated LES (MILES) in the con-
text of compressible flows. Hahn and Drikakis (2004) discussed three 
high-resolution schemes: a flux vector splitting (FVS), a characteristics-
based (Godunov-type), and a hybrid total variation diminishing (TVD) 
scheme.

In order to explain the ILES method, the fundamental governing equa-
tions for an unsteady, three-dimensional, compressible, and viscous flow 
can be put into a generic vector form:

 
 

(7.8)

where the vectors , , , , and  are defined as

  

(7.9)
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For the numerical solution of Equation (7.8), an explicit third-order 
Runge–Kutta scheme (Shu and Osher 1988) can be used for the time inte-
gration, and central differences can be used for the viscous terms, while 
different high-resolution schemes for the discretization of the advec-
tive terms may be used as described by Hahn and Drikakis (2004). As 
an example, the numerical schemes for the discretization of the advec-
tive terms are briefly described below, but more details can be found in 
Bagabir and Drikakis (2004).

Considering the one-dimensional, inviscid counterpart of Equation 
(7.8), / / 0  where  is the array of the unknown variables 
and  is the flux associated with the terms in  direction. The advec-
tive flux derivative /  (similarly, for the other advective flux deriva-
tives /  and / ) is discretized at the center of the th control 
volume or the grid point using the values of the intercell fluxes, that is,

/ ( )// /1 2 1 2 . The definition of the intercell flux function 
distinguishes among the different high-resolution schemes employed:

Flux vector splitting (FVS) scheme: The flux vector splitting is a tech-
nique for achieving upwind bias in numerical flux function. The FVS 
scheme is built by adding the contributions of both cells located on 
either side of a given interface and it defines the intercell advective 
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flux as 1 2 1 2 1 2/ / /( ) ( ), where the superscript    
 represents the Steger-Warming FVS scheme (Bagabir and 

Drikakis 2004; Zóltak and Drikakis 1998), while the left and right 
conservative variables  and  can be obtained by accurate inter-
polation schemes.

Characteristics-based scheme: The scheme is a Godunov-type method 
(Drikakis and Rider 2005) that defines the conservative variables 
along the characteristics as functions of their characteristic values. A 
high-order interpolation scheme such as the third-order interpolation 
scheme (Zóltak and Drikakis 1998) can be used to compute the char-
acteristic values, depending on the sign of the characteristic speed or 
the eigenvalue.

The hybrid TVD scheme: It defines the advective flux as   1 2  
1 2 1 2 1 2 1 21/ /

( )
/ /( ) ,  where 1 2/

( )  and 1 2/  are the 
intercell fluxes according to the SW-FVS and characteristics-based  
( ) schemes. The term 1 2/  is a limiter function defined by the 
square of the local Mach number differences across cell faces (Zóltak 
and Drikakis 1998). Limiters are the general nonlinear mechanism that 
distinguishes modern methods from classical linear schemes. Their 
role is to act as a nonlinear switch between more than one underlying 
linear method, thus adapting the choice of numerical method based 
upon the behavior of the local solution. Limiters result in nonlinear 
methods even for linear equations in order to achieve second-order 
accuracy simultaneously with monotonicity. Numerical flux limiters 
can act like dynamic, self-adjusting models, modifying the numerical 
viscosity to produce a nonlinear eddy viscosity.

In an ILES, the numerical scheme has to be constructed such that the 
leading order truncation errors satisfy physically required SGS model 
properties, and hence nonlinear discretization procedures are required 
due to the nonlinear characteristics of the SGS Reynolds stresses. Finite 
volume versions of shock-capturing schemes designed under the require-
ments of convergence to weak solution while satisfying the entropy con-
dition schemes can be viewed as relevant for ILES. In the monotonically 
integrated LES, or MILES, the effects of the SGS physics on the resolved 
scales are incorporated in the functional reconstruction of the convective 
fluxes using locally monotonic methods. Analysis based on the modified 
equations can be used to demonstrate an intriguing feature of MILES, 
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namely that when based on a particular class of flux-limiting schemes, 
the convection discretization implicitly generates a nonlinear tensor-
valued eddy viscosity that acts to stabilize the flow and suppress unphys-
ical oscillations (Grinstein 2003). MILES may be extended to the more 
general concept of nonlinear ILES in which the functional reconstruc-
tion of the convective flux functions is carried out using high-resolution 
nonlinear numerical schemes incorporating a sharp velocity-gradient 
capturing capability operating at the smallest resolved scales. By focus-
ing on the inviscid inertial-range dynamics and on regularization of the 
under-resolved flow, ILES follows up naturally on the historical prec-
edent of using this kind of numerical scheme for shock capturing.

Grinstein (2003) also pointed out the challenges for ILES development, 
which include developing a common appropriate mathematical and physi-
cal framework for its analysis and development, further understanding the 
connections between implicit SGS model and numerical scheme and, in 
particular, addressing how to build physics into the numerical scheme to 
improve on global ILES performance, such as the implicitly implemented 
SGS dissipation and backscatter features. Recently, Hickel et al. (2008) pro-
posed a systematic framework for the design, analysis, and optimization 
of nonlinear discretization schemes for implicit LES. In this framework, 
parameters inherent to the discretization scheme are determined in such 
a way that the numerical truncation error acts as a physically motivated 
SGS model. The resulting so-called adaptive local deconvolution method 
(ALDM) for implicit LES allows for reliable predictions of isotropic forced 
and decaying turbulence and of unbounded transitional flows for a wide 
range of Reynolds numbers (Hickel et al. 2008). Deconvolution param-
eters are determined by an analysis of the spectral numerical viscosity. An 
automatic optimization based on an evolutionary algorithm is employed 
to obtain a set of parameters that results in an optimum spectral match 
for the numerical viscosity with theoretical predictions for isotropic tur-
bulence (Hickel et al. 2006). Although model parameters of ALDM have 
been determined for isotropic turbulence at infinite Reynolds number, it 
successfully predicts mean flow and turbulence statistics in the considered 
physically complex, anisotropic, and inhomogeneous flow regime.

It has been shown that the implicit model in ILES performs at least 
as well as an established explicit SGS model in a few turbulent flows 
(Grinstein et al. 2007), which may also be combined together. For instance, 
additional explicit SGS modeling might be needed to address inherently 
small-scale physical phenomena such as scalar mixing and combustion, 
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which are actually outside the realm of any LES approach, leading to effi-
cient “mixed” SGS models incorporating both explicit SGS modeling and 
implicit modeling through the numerics.

The development of an ILES approach calls for a better understanding 
of the behavior of the numerical schemes and their relationships to the 
filtering process in LES theory. The use of a higher-order scheme leads to 
a fewer number of grid points in order to achieve a required level of accu-
racy and hence a larger filter width accordingly. An early theory for the 
filtering processing based on the truncation errors and mesh sizes of high-
order schemes still needs to be fostered. As a new approach to computing 
turbulent fluid dynamics, ILES combines generality and computational 
efficiency with documented success in many areas of complex fluid flows. 
Grinstein at al. (2007) edited a text on implicit large-eddy simulation, 
which synthesizes the current understanding of the theoretical basis of 
the ILES methodology and reviews its accomplishments. More details and 
applications of ILES can be found in Grinstein at al. (2007), which repre-
sents a comprehensive description of the state-of-the-art methodology.

Finally, it is worth noting that the approach of ILES also raises a ques-
tion of how to define the numerical transition between DNS and LES. A 
typical definition for DNS is to resolve all the relevant time and length 
scales in the flow field, which requires the grid size to be some small multi-
ples of the Kolmogorov scale (Drikakis and Rider, 2005). In both DNS and 
LES, high-accuracy fluid solvers based on centered, compact, or spectral 
schemes are employed, where numerical dissipation can be minimized. 
In DNS, physical viscosity ideally provides all the dissipation necessary to 
ensure numerical stability, which can normally be achieved when a very 
fine mesh is employed. For ILES, the governing equations solved are the 
same as those for DNS without the SGS modeling. However, there are a 
few differences. First, a very fine mesh is not needed in ILES since the 
small scales do not need to be resolved. Second, ILES does not need to 
employ very high-order numerical schemes because it is not required to 
resolve the small scales. As stated in Chapter 1, in state-of-the-art DNS, 
the discretization schemes used are at least fourth order, typically sixth 
and above. In LES, the numerical schemes used are normally of lower 
order. Third, truncation error of the discretization of the convective terms 
in ILES functions as an SGS model, which not only needs to be stable 
enough so that the energy in the smallest resolved scales will not grow 
unbounded leading to divergence, but also needs to be able to represent 
the subgrid-scale contribution.
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8C H A P T E R  

Further Topics  
and Challenges  
in DNS and LES

The complex behavior of fluid flow, including turbulence, can be 
mathematically considered as the consequence of a fairly simple set of 

equations as those presented in Chapter 1. Unfortunately, analytical solu-
tions to even the simplest turbulent flows have not been found so far or 
they simply do not exist. However, a complete turbulent flow where the 
flow variables are functions of space and time can be obtained numeri-
cally. This is known as the CFD approach. As advanced CFD techniques, 
DNS and LES have been evolving rapidly over the last few decades, mainly 
as tools for research. DNS has emerged as the most powerful numerical 
tool to understand the fundamentals of flow instabilities, transition to 
turbulence, and relatively low or moderate Reynolds number turbulent 
flows, but high Reynolds number flows and large-scale problems remain 
untouchable. In addition, complex geometry problems still represent a sig-
nificant difficulty for DNS. In the meantime, LES has been gradually evolv-
ing from a research tool toward a useful tool for practical applications.

DNS represents a methodology that avoids modeling or approximation of 
turbulence. The main purpose of DNS is to solve, to the best of our ability, for 
the turbulent flow field directly using highly accurate numerical techniques 
without modeling of the turbulence, on the platform of fast, large memory 
capacity computers. DNS means that the Navier–Stokes equations for fluid 
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must be solved exactly, which is not a simple task. For the discretization, 
very fine grids are necessary. Any DNS code is very time consuming and has 
extensive storage requirements. Due to the continuously increasing com-
puter power and availability of parallel computations, the contributions of 
DNS to turbulence research have been impressive and the future seems very 
promising. DNS offers advantages such as its great accuracy and the strin-
gent control of the flow being investigated. However, the significantly high 
numerical fidelity required by DNS has to be maintained all the time, which 
provides a significant challenge for complex geometry problems. Another 
challenge of DNS is always related to its high computational costs. Although 
the Reynolds numbers of the simple turbulent flows investigated by DNS 
are currently approaching those of the small-scale experiments and DNS 
using hundreds of millions of grid points such as 5123 can now be achieved 
on many supercomputers using parallel computations, there is still a long 
way to go for DNS to be directly applicable to most practical problems. 
Nevertheless, DNS has proven to be a very useful research tool that is able to 
provide results that are not possible using any other means. Due to its high 
accuracy, DNS can be used to perform “numerical experiments,” to create 
simplified situations that are not possible in an experimental facility, and 
to isolate specific phenomena in the fluid flow. As the most accurate CFD 
methodology, DNS can be used to perform controlled studies that allow bet-
ter insight into the fluid flow and allow scaling laws and turbulent models to 
be developed. The DNS databases offer the opportunity to extract informa-
tion from turbulent flow fields, which cannot, or only with much difficulty, 
be obtained from experiments. The availability of a DNS database allows 
testing of the concepts behind models and may result in novel approaches to 
model turbulent flows. For instance, DNS can be used to evaluate the sub-
grid scale models in LES. The availability of detailed DNS flow information 
can also improve the understanding of the physical processes in turbulent 
flows, which can be used to develop various flow control strategies in practi-
cal applications.

The numerical techniques used in DNS are typically finite difference 
schemes, or a combination of spectral and finite difference schemes, 
although approaches such as spectral volume methods for complex 
geometries are also being explored. The main technical challenge of 
DNS remains the memory and computational speed requirements. DNS 
of the air flow past a complete airfoil would require a computer with 1018 
flops capacity to be practical, which is far more than the currently avail-
able supercomputers with tera-flops (1012). Most practical engineering 
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problems such as the flow around a vehicle have too broad a range of 
scales to be directly computed using DNS. In addition, for chemically 
reacting flows encountered in combustion applications, the enormous 
computational requirements of DNS, including detailed chemical reac-
tion schemes, are even more difficult to meet. Multiphase flow systems 
also represent a massive challenge for DNS. Apart from the difficulties 
associated with a higher Reynolds number, larger problem domains, and 
more complex flow physics, it is also difficult for DNS to deal with com-
plex geometries where the accuracy of the numerics may be far from 
sufficient to represent the flow “exactly.”

For most high Reynolds number flows encountered in practical appli-
cations, approximations such as LES, which computes only the large  
energy-containing scales, are more prevalent than DNS. Compared with 
the challenges of computer capacity and the numerics for DNS, the chal-
lenges of LES are not only the numerical issues, but also the physical issues 
associated with the subgrid-scale modeling since small scales need to be 
modeled. In LES, the effect of high-frequency velocity fluctuations within 
a flow field is estimated using modeling techniques, which inevitably leads 
to challenges when the flow is of a complex nature in physics.

Turbulent flows consist of a broad range of time and length scales. DNS 
attempts to solve all the relevant time and length scales, while LES tries to 
solve the large scales and model the small scales. A turbulent flow field is a 
typical multiscale flow system. As an interdisciplinary research field, mul-
tiscale modeling has emerged over the last few years in many areas of engi-
neering and the physical sciences. Multiscale modeling is the field of solving 
physical problems that have important features at multiple scales, particu-
larly multiple spatial scales. A broad range of scientific and engineering 
problems involve multiple scales. There has been a growing need to develop 
systematic modeling and simulation approaches for multiscale problems. 
The launch of the SIAM (Society for Industrial and Applied Mathematics) 
journal  in 2003 indicated the forma-
tion of the research field. Since turbulent flows are typical multiscale prob-
lems, DNS and LES of turbulent flows can be discussed in the framework 
of the newly emerging field of multiscale modeling and simulation.

This chapter is devoted to further topics that are relevant to direct and 
large-eddy simulations and the challenges faced by DNS and LES. First, the 
important multiscale flow simulation is discussed, with an example given 
on simulations of turbulent atomization performed by Desjardins et al. 
(2008). Second, some challenges of DNS and LES are discussed, including 
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DNS of complex geometry problems and LES of complex physics problems 
such as multiphase and reacting flows. Finally, hybrid methods that are 
important to practical applications are discussed with examples of applica-
tion, including detached eddy simulation (DES) and delayed DES (DDES).

I. MULTISCALE FLOW SIMULATIONS
A. The Concept of Multiscale Modeling

It is not an exaggeration to say that almost all problems have multiple scales. 
A broad range of scientific and engineering problems depend crucially on 
behavior at multiple scales, including the dynamics of biomolecules, the 
microstructure of materials, image and data analysis, earthquake physics, 
and atmospheric and oceanic dynamics. Well-known examples of fluid 
flow problems with multiple length scales include all types of turbulent 
flows, combustion in gas-turbine combustors and internal combustion 
engines, and vortical structures on the weather forecasting map. Even 
though multiscale problems have long been studied in mathematics, the 
current rapid development and the formation of a special research field 
of multiscale modeling and simulation are driven primarily by the use of 
mathematical models in engineering and physical sciences, particularly 
in material sciences such as polymers, chemistry, fluid dynamics, and 
biology. Problems in these areas are often multiphysics in nature; namely, 
the processes at different scales are governed by physical laws of different 
characters—for example, quantum mechanics at one scale and classical 
mechanics at another. Multiscale modeling and computation is a rapidly 
evolving research field that has a fundamental impact on computational 
science and applied mathematics and influences the relation between 
mathematics and engineering and physical sciences. Emerging from this 
research field is a need for new mathematics and new ways of interacting 
with mathematics for engineering and physical sciences. Fields such as 
mathematical physics and stochastic processes, which have so far remained 
in the background as far as modeling and computation is concerned, are 
moving to the frontier. There are several reasons for the rapid develop-
ment of this research field. First, modeling at the level of a single scale, 
such as molecular dynamics or continuum theory, is becoming relatively 
mature. Second, the available computational capability has reached the 
stage when serious multiscale problems can be contemplated. Third, there 
is an urgent need from many other subjects of science and technology. For 
instance, nanoscience is a good example for the application of multiscale 



Further Topics and Challenges in DNS and LES n 209

modeling techniques. In a multiscale problem, different physical laws may 
be required to describe the system at different scales. Take the example of 
fluids. At the macroscale such as meters or millimeters, fluids are accurately 
described by the density, velocity, and temperature fields, which obey the 
continuum Navier–Stokes equations. On the scale of the mean free path, 
it is necessary to use kinetic theory based on Boltzmann’s equation. At the 
nanometer scale, molecular dynamics in the form of Newton’s law has to 
be used to give the actual position and velocity of each individual atom 
that makes up the fluid. Multiscale modeling and simulation has its own 
special methods, such as the heterogeneous multiscale method, which was 
presented as a general methodology for an efficient numerical computa-
tion of problems with multiple scales by Weinan et al. (2003). For a fluid, 
moving from atomic level to macroscopic level, the theories for model-
ing and computation change from quantum mechanics described by the 
Schrödinger equation, to the molecular dynamics described by Newton’s 
equation, and then to the kinetic theory described by Boltzmann’s equa-
tion, followed by the continuum theory described by Navier–Stokes equa-
tions, which are the equations DNS and LES are based upon.

Traditional monoscale approaches have proven to be inadequate for 
many problems, even with the largest supercomputers, because of the 
range of scales and the prohibitively large number of variables involved. 
Thus, there is a growing need to develop systematic modeling and simula-
tion approaches for multiscale problems. For multiscale problems, mod-
eling and analysis across scales and multiscale algorithms are the key 
elements. In a multiscale problem, the boundaries between different levels 
of theories may vary, depending on the system being studied, but the over-
all trend is that a more detailed theory has to be used at each finer scale, 
giving rise to more detailed information on the system. There is a long his-
tory in mathematics for the study of multiscale problems. Fourier analysis 
has long been used as a way of representing functions according to their 
components at different scales. More recently, this multiscale multiresolu-
tion representation has been made much more efficient through wavelets. 
Another example of multiscale methods is the proper orthogonal decom-
position technique discussed in Chapter 5. On the computational side, 
several important classes of numerical methods have been developed that 
address explicitly the multiscale nature of the solutions. As Weinan and 
Engquist (2003) summarized, these include multigrid methods, domain 
decomposition methods, fast multipole methods, adaptive mesh refine-
ment techniques, and multiresolution methods using wavelets. All these 
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methods can be used in CFD. From a modern perspective, the computa-
tional techniques described above are aimed at efficient representation or 
solution of the fine-scale problem. For many practical problems, full rep-
resentation or solution of the fine-scale problem is simply impossible for 
the foreseeable future because of the overwhelming costs. Therefore, alter-
native approaches that are more efficient need to be adopted. A classical 
approach is to derive effective models at the scale of interest. Examples of 
such a technique are the RANS and LES modeling approaches. Certainly 
the concept of multiscale modeling and simulation is relevant to CFD, 
including RANS, LES, and DNS.

The modeling elements in RANS and LES are obvious. Although DNS 
is intended as model-free, it is not possible to achieve such a state in com-
plex physics flows such as reacting flows and multiphase flows. In reacting 
flows, the chemistry of the combustion needs to be modeled so that it can 
be incorporated into the solver of the fluid flow at an affordable cost. For 
multiphase flows, the interaction between the different phases needs to be 
modeled, and mathematical models are also needed to track the interface 
between different phases. An example of such turbulent atomization is 
presented next to illustrate the application of multiscale modeling to fluid 
flow problems.

B. An Example of Multiscale Flow Modeling: Turbulent Atomization

The recent work by Desjardins et al. (2008) represents an example of mul-
tiscale flow modeling and simulation, where a gas-liquid two-phase flow 
system is investigated focusing on the liquid atomization in a turbulent 
flow environment. The breakup and atomization of liquid jets have a broad 
range of practical applications, including many industrial processes such 
as fuel injection in combustors, two-phase flow chemical reactors, spray 
coating, inkjet printing, and spray formations in medical applications. 
Sprays involving liquid- and gas-phase flows are widely utilized to provide 
rapid mixing between the liquid and its ambient environment. In most 
practical applications, the spray flow originated from an atomizer, which 
is often in the form of a jet, rapidly disintegrates into ligaments and fur-
ther into droplets. This process of liquid jet breakup and atomization nor-
mally occurs near the nozzle orifice, and the flow develops into sprays at 
further downstream locations. The liquid disintegration is caused either 
by intrinsic (e.g., potential) or extrinsic (e.g., kinetic) energy, and the liq-
uid is atomized either due to the kinetic energy contained in the liquid 
itself, by the interaction of the liquid sheet or jet with a (high-velocity) 
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gas, or by means of mechanical energy delivered externally (e.g., by rotat-
ing devices). Although the liquid breakup and atomization process is an 
essential stage in the development of spray flows, it is not fully understood, 
particularly for high-speed jets. For the multiscale gas-liquid two-phase 
flow problem investigated by Desjardins et al. (2008), the modeling issues 
include the representation of the surface tension term as well as the den-
sity and viscosity jumps on the interface, while the challenging numerical 
issues include the accurate capturing of the gas-liquid interface.

Desjardins et al. (2008) presented a method for simulating incompress-
ible two-phase flows by improving the conservative level set technique 
introduced by Olsson and Kreiss (2005). The method was then applied 
to simulate turbulent atomization of a liquid diesel jet at Re  3000. The 
turbulent atomization problem investigated is physically very complex, 
involving momentum transfer between the two phases where the fine liq-
uid droplets can be smaller than the grid size and the large scales include 
the liquid jet penetration and spreading. In the gas-liquid two-phase flow, 
surface instabilities, ligament formation, ligament stretching and fragmen-
tation, and droplet coalescence all interact with turbulence to transform 
large-scale coherent liquid structures into small-scale droplets. There are 
several severe difficulties to numerically investigate such a complex phys-
ics problem.

The first difficulty is the large change in the material properties of the 
two phases; for example, the density and viscosity are significantly differ-
ent in the two phases. In a diesel fuel injection, the liquid-to-gas density 
ratio can be as high as 40 while the viscosity ratio can be of the order of 
30, which can move up to several hundred for aircraft engines. This large 
change in fluid properties corresponds to sharp gradients in the flow field, 
leading to severe numerical difficulties. In addition, the surface tension 
force on the gas-liquid interface needs to be mathematically and numeri-
cally represented, which also requires accurate localization and trans-
port of the interface. Moreover, in the case of incompressible flows, the 
interface transport and localization should ensure that the volume of each 
phase is exactly conserved. As a multiscale problem, there is also a chal-
lenge coming from the small scales that the atomization process produces. 
In a numerical simulation, the solver normally generates liquid structures 
at the limit of numerical resolution. The formation of small liquid struc-
tures requires high numerical resolution to tackle.

For the modeling of gas-liquid two-phase flows, the volume of fluid 
(VOF) method has been broadly used, but the gas-liquid interface needs to 
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be reconstructed from the VOF results and the exact location of the inter-
face is unknown without this reconstruction (Scardovelli and Zaleski 1999). 
The front-tracking approach was introduced by Unverdi and Tryggvason 
(1992) and consists of discretizing the interface using an unstructured 
moving mesh that is transported in a Lagrangian fashion. However, the 
method requires frequent mesh rearrangements that affect the conserva-
tion of the liquid volume. The main limitation of this approach is the lack 
of automatic topology modification. Moreover, the parallelization of such 
a method for massively parallel computation is very challenging. Over the 
last several years, the level set method aiming at representing the interface 
implicitly by an isolevel of a smooth function, as described by Osher and 
Fedkiw (2003), has drawn significant attention in the field of interface mod-
eling. Simple Eulerian scalar transport schemes can be used to transport 
this smooth function, and therefore highly accurate methods are available. 
Furthermore, the smoothness of the level set function makes the interface 
normals and curvature readily available for the surface tension calculation, 
while parallelization is straightforward and highly efficient. However, level 
set methods are typically plagued by mass conservation issues since no 
inherent conservation property of the level set function exists.

In an effort to reduce mass conservation errors while retaining the sim-
plicity of the original method, Olsson and Kreiss (2005) and Olsson et al.
(2007) proposed a simple modification to the level set method. By replac-
ing the usual signed distance function of the classical level set approach 
with a hyperbolic tangent profile that is transported and reinitialized 
using conservative equations, Olsson and Kreiss (2005) showed that the 
mass conservation errors could be reduced by an order of magnitude in 
comparison with the results obtained with a signed distance function. 
Based on the work by Olsson and Kreiss (2005) and Olsson et al. (2007), 
Desjardins et al. (2008) made a few modifications to the level set method 
and presented the accurate conservative level set (ACLS) method, result-
ing in both improved accuracy and robustness.

Numerical simulations of liquid jet/sheet breakup and atomization in 
a gaseous atmosphere are very scarce so far, mainly due to the complex 
spatially developing nature of the flow and the fact that often high density 
ratios and capillary forces lead to serious numerical problems (Klein 2005). 
The surface tension force in the gas-liquid two-phase flow system needs 
to be modeled accurately. A commonly used approach is the continuum 
surface force (CSF) model developed by Brackbill et al. (1992). However, the 
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CSF model spreads out both the density jump and the surface tension force 
over a few cells surrounding the interface in order to facilitate the numeri-
cal discretization. Consequently, this approach tends to misrepresent the 
smallest front structures. For the handling of the large density ratio and 
the surface tension force in a multiphase flow solver, the ghost fluid method 
(GFM) as described by Fedkiw et al. (1999) provides a very attractive way in 
the context of finite differences, by using generalized Taylor series expan-
sions that directly include these discontinuities. Since the GFM explicitly 
deals with the density jump, the resulting discretization is not affected. 
Similarly, the surface tension force can be included directly in the form 
of a pressure jump, providing an adequate sharp numerical treatment of 
this singular term. Accordingly, Desjardins et al. (2008) used the GFM for 
the surface tension term as well as for the density jump. However, the CSF 
model was still used for the discretization of the viscous terms due to the 
complexity involved in using the GFM for the viscous term. Their argu-
ment was that the viscous contribution is small in comparison with the 
convective terms in a turbulent flow, which is valid for high-speed flows 
involved in liquid atomization.

The level set approach is at the center of the gas-liquid interface modeling 
by Desjardins et al. (2008). In the level set approach, the interface is defined 
implicitly as an isosurface of a smooth function . This approach benefits 
from many advantages, including automatic handling of topology changes, 
efficient parallelization, as well as easy and accurate access to the interface 
normals and curvature. There are two different level set functions that may 
be used: the commonly used distance function proposed by Chopp (1993), 
and the hyperbolic tangent function that was used by Olsson and Kreiss 
(2005) in the context of their conservative level set method. In the level set 
method, the transport of the interface can simply be described by

 

0
 

(8.1)

In Equaton (8.1),  represents the velocity field. The classical level set 
technique by Chopp (1993) relies on representing the interface implicitly 
as the zero level set of a smooth function chosen to be the signed distance 
from the interface, that is,

 | ( , )| | |  (8.2)
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In Equation (8.2),  corresponds to the closest point on the interface 
from , and ( , ) 0 on one side of the interface while ( , ) 0 on the 
other side. With this definition of the level set function, the interface itself 
corresponds to the ( , ) 0 isosurface. This choice leads to a very smooth 

-field, which can be adequately transported and differentiated to com-
pute the normal vector  and the curvature  of the interface defined as

 

| |
and

  
(8.3)

In the classical level set technique, transporting the interface using 
Equation (8.1) leads to distortion in the level set function with the smooth-
ness of  lost, consequently leading to numerical problems. In order to ensure 
that  remains smooth, an additional treatment is introduced to reshape  
into a distance function. This reinitialization of the distance profile can be 
performed using different procedures. The commonly used method is to solve 
a Hamilton-Jacobi equation as given by Sussman et al. (1994):
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In Equation (8.4),  is a modified sign function as given in Peng et al. 
(1999), and  represents a pseudotime. This equation can be discretized 
with high accuracy, therefore leading to an accurate reconstruction of the 
distance profile. However, the distance function level set approach in the 
context of multiphase flows can be problematic because neither the level 
set transport nor the reinitialization inherently conserves the volume of 
the region enclosed by the zero level set. For gas–liquid two-phase flows, 
this can lead to gains or losses in the mass of the liquid, which can lead to 
substantial errors in the numerical simulations.

In order to tackle the problem of liquid volume conservation, Olsson 
and Kreiss (2005) and Olsson et al. (2007) employed a hyperbolic tangent 
function  instead of the signed distance function . The hyperbolic tan-
gent function  is defined as

 
( , ) tanh ( , )1

2 2
1

 
(8.5)

In Equation (8.5),  is a parameter that sets the thickness of the profile. 
Rather than defining the interface location by the isosurface 0 , it is now 
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defined by the location of the 0 5.  isosurface. The transport of the inter-
face can still be performed by solving the same equation as Equation (8.1) 
for . However, it can also be written in conservative form provided the 
velocity field  is solenoidal, that is, 0, namely,

 

( ) 0
 

(8.6)

With the level set transport equation written in conservative form, and 
the given definition of , it is clear that the scalar  should be a conserved 
quantity. As in the case of the level set function , nothing ensures that 
solving Equation (8.6) preserves the form of the hyperbolic tangent profile 

. As a result, an additional reinitialization equation needs to be intro-
duced to reestablish the shape of the profile. As in Olsson et al. (2007), this 
equation can be written as
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(8.7)

Equation (8.7) can be advanced in pseudotime  and it consists of a com-
pression term on the left-hand side that aims at sharpening the profile 
and of a diffusion term on the right-hand side that ensures that the pro-
file remains of the characteristic thickness , and is therefore resolvable 
on a given mesh. It should be noted that this equation is also written in 
conservative form. As a result, solving successively for Equations (8.6) and 
(8.7) should accomplish the transport of the 0 5. isosurface, preserve the 
shape of the hyperbolic tangent profile, and ensure the conservation of .

Based on the method of Olsson and Kreiss (2005) and Olsson et al. 
(2007), Desjardins et al. (2008) presented the accurate conservative level 
set (ACLS) method and the ACLS solution procedure can be briefly 
given as follows: (1) Advance the  field by solving Equation (8.6) using 
a semi-implicit Crank–Nicolson time integration. (2) Use a fast march-
ing method (Desjardins et al. 2008) to efficiently reconstruct from .  
(3) Compute the face normals from . (4) Compute the least-squares 
curvature from . (5) Perform the conservative reinitialization step: 
using a semi-implicit Crank–Nicolson time integration, Equation (8.7) 
is advanced.

In the simulations of the turbulent atomization performed by Desjardins 
et al. (2008), the ACLS method provides the details of the gas–liquid inter-
face, where the material properties including density and viscosity are 
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subject to a jump, while the velocity is continuous across the interface. The 
important change across the interface occurs to the variable “pressure” 
(Desjardins et al. 2008), which includes the surface tension term. In the 
solver, the ACLS procedure is coupled with the incompressible Navier–
Stokes equations for the two-phase fluid flow. The full numerical solution 
procedure of Desjardins et al. (2008) can be summarized as follows:

Using the ACLS methodology, advance the interface implicitly from 
1/2 to 1/2 using the velocity at .

Advance the velocity field implicitly from to 1 by solving the 
Navier–Stokes momentum equations without pressure gradient.
Project the velocity field by solving the Poisson equation, making 
use of GFM. The solution of the pressure equation is computed using 
a Krylov-based method (van der Vorst 2003), preconditioned by a 
multigrid solver (Falgout and Yang 2002).
Correct the velocity at 1 using the pressure gradient, again using 
GFM.

Sample results are shown in Figures 8.1 and 8.2. Figure 8.1 shows the 
instantaneous snapshots of the interface at different time instants. The 
interface displays a complex, turbulent behavior, as the liquid jet undergoes 
turbulent atomization. Many complex phenomena interact, leading to a 

FIGURE 8.1 Turbulent atomization of a liquid diesel jet with   2.5  
between each image. (Desjardins et al. 2008; with permission from Elsevier 
Science Ltd.)
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fast break-up of the liquid core into ligaments and sheets, then droplets. It 
is interesting to note that by the end of the computational domain, the liq-
uid core has fully disintegrated. The -field as well as the magnitude of the 
vorticity field are presented in several two-dimensional cuts in Figure 8.2. 
The fully developed nature of the turbulence appears clearly, along with 
the chaotic nature of the interface. The flow appears to be vortical with 
complex fine scales. The results indicate that the numerical algorithm is 
robust for such a complex, turbulent, three-dimensional, multiphase, and 
multiscale flow problem.

II.  CHALLENGES IN DNS AND LES: COMPLEX 
GEOMETRY AND SGS MODELING

A. Challenges in DNS: Complex Geometry

In general, there are many challenges in CFD, but problems associated with 
turbulence, shocks, and complex geometries stand out. As the most accurate 
CFD method, DNS has been developing rapidly over the last two decades. 

FIGURE 8.2 -field (left) and magnitude of the vorticity (right) on two-
dimensional axial and lateral cuts at   22.8  for the turbulent liquid jet 
case. (Desjardins et al. 2008; with permission from Elsevier Science Ltd.)
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For applications of DNS to larger domain and higher Reynolds number 
flows of practical relevance, the main technical challenges remain the mem-
ory and computational speed requirements. For complex physics flows such 
as chemically reacting flows and multiphase flows, the challenges include 
both the memory and computational speed requirements and efficient mod-
eling or mathematical representation of the complex flow physics. Among 
various challenges for DNS, the most significant one in terms of numerical 
techniques is the treatment of complex geometries, where the accuracy of 
the numerical methods must be high enough, which is difficult to achieve. 
Apart from some special cases (e.g., Moulinec et al. 2004), DNS of complex 
geometry problems always represents a significant difficulty.

The field of DNS of turbulence has developed rapidly since the early 
simulations of homogeneous turbulence using spectral methods. Currently, 
high-order finite difference schemes and Chebyshev spectral methods are 
widely used in DNS in simple and separable computational domains. In the 
meantime, the computation of compressible flows in the presence of shocks 
has been based almost exclusively on low-order methods, especially in the 
shock region. Similarly, the computation of flows in complex geometries has 
been primarily based on low-order finite volume methods. DNS of turbu-
lence in complex-geometry domains can be successful only if high-order 
accurate methods are employed. Efficient high-order discretization could be 
the most effective means of making real progress. Spectral element and the 

 version of finite element methods were introduced in CFD in the early 
1980s to address the issue of complex geometry domains and obtain high-
order accuracy in such domains, which provides great flexibility in discreti-
zation and very effective means for adaptive refinement strategies. There are 
three versions of finite element methods. The classical -version achieves the 
accuracy by refining the mesh, while the -version keeps the mesh fixed and 
the accuracy is achieved by increasing the degree . The  version prop-
erly combines both approaches. The  version is a useful development of 
finite element methods. However, the  finite element method, and any 
high-order methods in general, are not as robust as low-order methods. 
They are very sensitive to boundary conditions and geometric or data sin-
gularities, which are not as stable as low-order methods and do not preserve 
monotonicity in the presence of discontinuous solutions such as shocks or 
contact discontinuities. For these methods to be computationally competi-
tive with their low-order counterparts, they have to maintain fast conver-
gence as their computational complexity is higher compared to low-order 
methods. Progress has been made over the last several years to address the 
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computational complexity of spectral element and methods, where great 
advances have also been made on the theoretical side with rigorous theo-
rems on stability (Karniadakis and Sherwin 2005). Such high-order numeri-
cal discretization methods have found use in varied situations where simple 
domain geometries have allowed easy application of boundary conditions. 
Karniadakis and Sherwin (2005) also demonstrated that spectral elements 
can have more widespread applicability through the use of grids of irregular 
“spectral elements.”

As discussed in Chapter 5, the spectral finite volume methods (Wang 
2002) are currently being explored as a promising numerical method 
for complex geometries, which are another type of high-order accurate, 
conservative, and computationally efficient scheme. In the spectral finite 
volume method, cell-averaged data from each triangular or tetrahedral 
finite volume is used to reconstruct a high-order approximation in the 
spectral volume, while Riemann solvers are used to compute the fluxes 
at the spectral volume boundaries. Since it does not require information 
from neighboring cells to perform reconstruction, it can be potentially 
very efficient and accurate. Recently, Wang (2007) reviewed several high-
order spectral finite volume methods based on unstructured grids for 
the compressible Euler and Navier–Stokes equations, where the spatial 
and temporal discretizations were treated separately. Sample computa-
tional results were shown to illustrate the capability of selected methods. 
These high-order methods are expected to be more efficient than low-
order methods for problems requiring high accuracy, including DNS 
and LES.

In the spectral finite volume or spectral-volume (SV) method, a single 
nonsingular stencil that can be applied to all the cells in an unstructured 
grid needs to be found. The spectral volumes (SVs) are unstructured grids 
of cells, triangles in 2D, and tetrahedra in 3D. Each SV is then partitioned 
into a number of “structured” subcells, referred to as control volumes 
(CVs), that support a polynomial expansion of a desired degree of preci-
sion. The unknowns are now the cell averages over the CVs. The CVs can 
be polygons or polyhedra. In 3D, they can have nonplanar faces, which 
must be subdivided into planar facets in order to perform the required 
integrations. All the SVs are partitioned in a geometrically similar 
manner. Therefore, a single, universal reconstruction for all SVs can be 
obtained. Due to the symmetry of the partition, only a few distinct coef-
ficients appear in the expansion in terms of the CV unknowns. A CV face 
that lies on an SV boundary will have a discontinuity on its two sides. 
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A Riemann solver is then necessary to compute the flux on that face. If 
the flux is a linear function of the unknowns, the flux integration can be 
performed analytically without invoking quadratures (Liu 1994), and the 
result can be expressed as a weighted sum of all the CV unknowns in the 
two SVs. If the flux is a nonlinear function of the unknowns, a quadra-
ture approximation of the appropriate degree of precision is required. 
The conservative variable on one side of a quadrature point can again be 
expressed as a weighted sum of the CV unknowns in the SV on that side. 
Since the quadrature points belong to just a few symmetry groups, the 
total number of distinct weights that need to be stored is relatively small. 
The reconstruction within each spectral volume is continuous. Therefore, 
a linear flux over a CV face that lies in the interior of an SV can be evalu-
ated directly, and the weights for each type of facet can be stored. For a 
nonlinear flux, a similar procedure can be carried out for each quadra-
ture point.

In the spectral finite volume method, the most general form of a con-
servation law can be written as

 

0
 

(8.8)

In Equation (8.8), the conservative variable  can be a scalar or a vector, 
and the generalized flux  can be a scalar, vector, or tensor. The term  
represents the divergence, curl, or gradient of , depending on the physical 
definition of . Integrating Equation (8.8) over each CV, we obtain
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(8.9)

In Equation (8.9), is the number of faces, , is the volume of the th 
CV in the th SV, and , , is the area of planar facet bounding , . The 
unknowns are the volume averages of , defined as
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(8.10)

In the spectral finite volume method, the partitioning of each SV into 
CVs depends on the choice of basis functions for the reconstruction and 
the order of accuracy is one order higher than the reconstruction degree 
of precision. Liu et al. (2006) partition the SV into  CVs, so that the 
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reconstruction involves only the inversion of a square matrix. For a com-
plete polynomial basis, a reconstruction of degree of precision  requires a 
partition into at least  CVs given by (Liu et al. 2006)
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(8.11)

In order to reconstruct  within each SV, a set of complete polynomials 
of th degree of precision ( ) need to be introduced and ( ) in the th 
SV can be expanded as
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Equation (8.10) can then be written as
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In Equation (8.13),
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Liu and Vinokur (1998) gave the exact integrations of polynomials over 
arbitrary polygons or polyhedra in terms of the coordinates of vertices. 
The elimination of the coefficients  from Equations (8.12) and (8.13) can 
be shown succinctly using matrix algebra (Liu et al. 2006), leading to

 ( ) ( )  (8.15)

and

 R  (8.16)

In Equations (8.15) and (8.16), , , and ( )  stand for the algebraic 
vectors with components , , , , and ( ), respectively, and the super-
script  represents transposition, while R  represents the matrix with ele-
ments , . Eliminating  from Equations (8.15) and (8.16), the following 
cardinal form can be obtained:

 ( ) ( )  (8.17)
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where

 ( ) ( ) 1  (8.18)

In Equations (8.18), the algebraic row vector ( ) has components , ( ), 
which are known as shape functions or cardinal basis functions. In 
expanded form, Equation (8.17) can be written as

 

( ) ( ), ,
1  
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For a facet  on an interior CV face, if  is a linear function of  the flux 
integral in Equation (8.9) can be evaluated by simply integrating  over 
that facet. Substituting the expression given in Equation (8.19), the result 
as a weighted sum of the CV unknowns can be given as
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In Equation (8.20), the surface integrals of the shape functions per 
unit area are universal, irrespective of the SVs. There are only a few 
of these coefficients for each partition, which can be calculated exactly 
and stored in advance. For nonlinear flux functions, the flux integral is 
evaluated by an th degree of precision quadrature approximation of 
the form

 

,
, [ ( )]

 
(8.21)

where the  is the known quadrature weight. Using Equation (8.19), 
( )  can be evaluated as a weighted sum of the CV unknowns

 

( ) , ,

 
(8.22)

In Equation (8.22), the weights , , ( )  are the functional values of 
the shape functions at the quadrature point, which are also universal, irre-
spective of the SVs. There are also only a few of these coefficients, which 
can be calculated exactly and stored in advance.
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For a CV face on an SV boundary, since  may be discontinuous, the 
flux is replaced by a Riemann flux given by Liu et al. (2006) as

 [ ( )] [ ( ), ( ), ]  (8.23)

For linear flux functions, the surface integral of Equation (8.21) can be 
expressed as a weighted sum of the  in both SVs sharing the face. For non-
linear flux functions,  in Equation (8.21) is replaced by Equation (8.23) 
with  and  evaluated at quadrature points using Equation (8.22).

In using the spectral finite volume method, one simply specifies 
variables for the conservative variable  (for instance, the variable is 
density for the continuity equation while it is the mass f lux for the 
momentum equation) and the generalized f lux  in Equation (8.8), and 
then follows the above discretization procedure. Apparently this spec-
tral finite volume method is significantly different from the traditional 
finite difference or finite volume methods. For a DNS application, 
parallel computation is always needed. For the spectral finite volume 
method, there are several aspects of the data structure that can lead to 
a very efficient parallelizable code. The global grid data consists of face 
numberings, vertex numberings and locations, and cell numberings. 
The topology is specified by listing for each face its vertex numbers, in 
an order indicating its orientation, and the two adjacent cell numbers. 
In order to make use of the universal nature of the partitioning, all 
global cells can be mapped into a single standard SV. Each global face 
can have three possible orientations in the standard SV for 2D, and 12 
for 3D. For each SV partition, the local CV connectivities are prede-
termined. This information and the corresponding weights ,  or ,  
can be read in as input to the code. It is then possible to have a single 
code valid for 2D or 3D, with any desired order of accuracy (Liu et al. 
2006). Liu et al. (2006) also pointed out that there is an aspect inher-
ent in the spectral finite volume method that permits optimum use of 
cache memory, resulting in great computational efficiency on modern 
computers. The spectral volume method might be able to improve the 
capability of DNS and LES significantly since practical engineering 
problems are predominantly of complex geometries. However, for the 
SV method to be more broadly used, the computational efficiency and 
accuracy of the method with different orders of accuracy need to be 
systematically assessed and compared with the compact finite differ-
ence schemes with the same orders of accuracy.
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B. Challenges in LES: SGS Modeling

LES is a CFD technique that lies between DNS and RANS in terms of 
physical modeling and numerical accuracy. As examples of the applica-
tions of DNS and LES to practical engineering flows, Rodi (2006) pre-
sented DNS and LES results of three engineering flows carried out in his 
research group. The first example, simulated by using both DNS and LES, 
was the flow in a low-pressure turbine cascade with wakes passing peri-
odically through the cascade channel. In this situation, the attention was 
focused on the laminar to turbulent transition of the boundary layers on 
the blade surfaces. In the second example, LES of the flow past the Ahmed 
body, which is a car model with slant back, was presented. In spite of the 
fairly simple geometry, the flow around the model has many features of 
the complex, fully 3D flow around real cars. The third example, for which 
LES was presented, is the flow past a surface-mounted circular cylinder 
of height-to-diameter ratio of 2.5. In this case, complex 3D flow develops 
with interaction of various vortices behind the cylinder. Apparently the 
second and third cases were not achievable for DNS. By means of these 
examples, Rodi (2006) showed that complex turbulent flows of engineer-
ing relevance can be predicted realistically by DNS and LES, albeit at large 
costs. The DNS and/or LES methods are particularly suited and superior 
to RANS methods for situations where unsteadiness such as vortex shed-
ding and large-scale structures dominate the flow.

Over the last several years, DNS has evolved into an important tool 
for studying transition mechanisms or for a basic understanding of the 
flow, while LES has gradually evolved into a tool for practical engineer-
ing applications. Benhamadouche and Laurence (2003) evaluated LES 
against RANS, and investigated the cross-flow in a staggered tube bundle 
using LES and a transient Reynolds stress transport model (RSTM) in 2D 
and 3D, with two levels of grid refinement. The numerical method was 
based on a finite volume approach on unstructured grids using a collo-
cated arrangement for all the unknown variables. It was shown that the 
LES results on the fine mesh are comparable to DNS, and experiments 
and reasonable agreement were still achieved with a coarse mesh. For the 
physical problem investigated by Benhamadouche and Laurence (2003), 
the RSTM also produced satisfactory results in 3D, but the 2D RSTM pro-
duced unphysical results. Hanjali  (2005) provided a view of some devel-
opments and a perspective on the future role of the RANS approach in the 
computation of turbulent flows and heat transfer in competition with LES. 
It was argued that RANS can further play an important role especially 
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in industrial and environmental computations. Hanjali  (2005) empha-
sized the recent developments in RANS, as well as their potential in hybrid 
approaches in combination with the LES strategy. Limitations in LES at 
high Reynolds and Rayleigh number flows and heat transfer were revisited 
and some hybrid RANS/LES routes were discussed. The potential of very-
large-eddy simulations (VLES) of flows dominated by (pseudo)determin-
istic eddy structures was also discussed and illustrated in an example of 
very high Rayleigh number thermal convection.

In general, the vast amount of LES results available in the literature 
highlighted the success achieved by LES so far. However, there are still 
many unsolved issues in LES, particularly those associated with the sub-
grid scale (SGS) modeling of complex physical flows such as multiphase 
and reacting flows. Bellan (2000) reviewed the LES in the context of liq-
uid spray computation, where issues related to modeling both the droplet 
interaction with the carrier flow and the interaction among droplets were 
discussed. Particular attention was devoted to LES aspects, which are dif-
ferent from those of single-phase flows. These include the correct portrayal 
of the droplet interaction with small turbulent scales, the modeling of SGS 
stresses, SGS heat and SGS species fluxes, and the accurate representation 
in the carrier flow equations of the source terms associated with the pres-
ence of the droplets. It was pointed out that there were a remarkably small 
number of studies addressing the combination of crucial phenomena 
needed for the accurate description of sprays (i.e., anisotropy, inhomoge-
neity, and three-dimensionality at the small scale), without appealing to 
strictly single-phase SGS models.

The database generated by DNS can be used to test SGS models a priori, 
while an posteriori study can be used to evaluate the impact of the SGS 
model on the flow field development. LES of complex physics flows such 
as multiphase flows is always challenging. Okong’o and Bellan (2004) pre-
sented numerical results of a three-dimensional temporal mixing layer 
with evaporating droplets with a priori analysis, while Leboissetier et al. 
(2005) conducted a posteriori analysis. In these studies, the gas-phase 
equations were written in a Eulerian frame for two perfect gas species, 
including the carrier gas and vapor emanating from the droplets, while 
the liquid-phase equations were written in a Lagrangian frame. The effect 
of droplet evaporation on the gas phase is considered through mass, 
momentum, and energy source terms. The LES models include those for 
the subgrid-scale fluxes and the filtered source terms, which both need to 
be assessed. In the field of LES of gas–liquid or gas–solid particle flows, 
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there are still several important issues that remain at the stage of work 
in progress: the modeling of the interaction of the small-scale turbulence 
with the droplets or particles; the modeling of the SGS stresses, heat, and 
species fluxes; and the modeling of the source terms in the LES equations. 
These issues must all be resolved prior to attempting a meaningful LES 
calculation. In addition, the coupling between the large and small scales 
needs to be reflected in the modeling procedure for an accurate represen-
tation of the spray flow.

Another type of complex physics flow is reacting flows. Combustion 
LES appeared in the literature only a little more than a decade ago. Pitsch 
(2006) recently reviewed LES of turbulent combustion. It was argued and 
demonstrated that LES clearly offers advantages that move the state of 
the art toward accurate and predictive simulations of turbulent combus-
tion. Although much research has been carried out in recent years, many 
fundamental questions still have to be addressed to realize the full pre-
dictive potential of combustion LES. Many studies have been performed 
in a priori testing and simulations of academic configurations as well as 
practical combustion devices exploring the potential of combustion LES. 
However, little fundamental research has been done that goes beyond the 
methods typically applied in the Reynolds-averaged context. The linear 
eddy mixing (LEM) model discussed in Chapter 6 provides an attempt 
at combustion LES. Within the context of LES, the LEM approach can be 
used to model the small-scale processes ranging from the grid resolution 
down to the Kolmogorov scale or the smallest scales related to chemical 
reaction in reduced dimension, while the large scales of the flow are cal-
culated directly from the LES equations of the motion with an appropriate 
coupling procedure. However, there is clearly a need for further develop-
ment in terms of SGS modeling of turbulent combustion.

III. HYBRIDIZATION: DETACHED EDDY SIMULATION (DES)
The basic concept of hybrid methods is to combine the advantages of two 
(or more) methods, yielding an optimal solution at least for a special class 
of flows, and to afford predictions of high Reynolds number flows with 
reasonable computational efforts. Hybrid methods such as the detached 
eddy simulation (DES) proposed by Spalart et al. (1997) and Spalart (2000) 
have been attracting more attention recently and can be a useful approach 
in practical simulations of wall-bounded flows. In DES, the attached flow 
regions near the walls are distinguished from the separated flow regions 
with detached eddies. An example of DES formulation is given by Spalart 
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et al. (1997). The model was originally formulated by replacing the distance 
function  in the Spalart–Allmaras (S–A) one-equation model (Spalart 
and Allmaras 1992) with a modified distance function

 
� min[ , ]  (8.24)

where  is a constant and  is the largest dimension of the grid cell in 
question. This modification of the S-A model, while very simple in nature, 
changes the interpretation of the model substantially. This modified dis-
tance function causes the model to behave as a RANS model in regions 
close to walls, and in a Smagorinsky-like manner away from the walls. This 
is usually justified with arguments that the scale dependence of the model 
is made local rather than global, which is the key feature of an LES, and 
that dimensional analysis backs up this claim. This DES approach may be 
used with any turbulence model that has an appropriately defined turbu-
lence length scale (distance in the S–A model) and is a sufficiently local-
ized model. Different turbulence models may be used in the DES approach, 
where the model should facilitate the switch between LES and RANS. In 
practice, many implementations of the DES approach allow for regions to be 
explicitly designated as RANS or LES regions. Also, many implementations 
use different numerical schemes in the RANS regions and the LES regions, 
where upwinded differences are frequently used in the RANS regions while 
central differences are often employed in the LES regions.

As a hybrid method, the DES method combines RANS and LES. It 
means that, near solid boundaries, the governing equations work in the 
RANS mode where all turbulent stresses are modeled using the tradi-
tional RANS turbulence models, while far away from solid boundaries, 
the method switches to the LES mode. Note that pressure and velocity 
fields are time- or ensemble-averaged in the near-wall region. Therefore, 
the unsteady vortical structures in the near-wall region are not resolved 
directly and DES is not able to give detailed information on the near-
wall dynamic structures. The near-wall flow is predicted by RANS with 
statistical turbulence models, whereas the detached flow region, includ-
ing the large-scale unsteady vortical structures, are computed by LES. 
Recently, Spalart  (2009) systematically reviewed the DES approach and 
it was pointed out that the principal weakness of DES is its response to 
ambiguous grids, where DES on a given grid can be less accurate than 
RANS on the same grid or DES on a coarser grid in some situations. 
Partial remedies have been found, yet dealing with thickening boundary 
layers and shallow separation bubbles still represents a great challenge 
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for DES. Apart from the nonmonotonic response to grid refinement, 
DES also needs to deal with issues such as different numerical needs 
in the RANS and LES regions and the absence of a theoretical order 
of accuracy, and the coupling between the RANS and LES modeling. 
In order to overcome the problem of the nonmonotonic response to 
grid refinement of the DES, Spalart et al. (2006) proposed the delayed 
detached eddy simulation (DDES), which is one of the latest evolutions 
of the original DES approach. The originality of the DDES is the use of 
a function switching continuously from 0 in the boundary layer to 1 in 
the detached regions. For the DES approach to be an effective hybrid 
method, the numerical issues and the coupling between RANS and LES 
modeling still need to be further investigated.

Detached eddy simulation has found applications in many practical 
engineering problems. One such example is noise prediction. Noise is sim-
ply the pressure fluctuation in the flow field. The pressure fluctuations that 
can be sensed by the healthy ear are normally from slightly below 20 Pa 
(the nominal hearing threshold). The sound pressure level is a dimensional 
quantity and the measurement units are decibels (dB):
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From nondimensional quantities, the dimensional sound pressure level 
(dB) can be calculated from the following equation:
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Numerical prediction of the noise field is difficult for two reasons: (1) the 
computational domain has to be big enough and simulation has to be time-
dependent for the acoustic predictions to be meaningful, and (2) the numer-
ical methods need to be accurate enough so that the small acoustic energy 
can be accurately captured. The latter is particularly important because the 
acoustic energy is normally several orders of magnitude smaller than the 
flow energy (considering that the pressure fluctuation can be a few Pa while 
the pressure of flow is at least 105 Pa). Computational aeroacoustics is a typi-
cal multiscale simulation and modeling problem, where the small scales are 
related to the turbulence structures and the large scales can be related to 
the acoustic waves. Both DNS and LES can be used to predict the acoustic 
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field, apart from the modeling approach—acoustic analogy methods that 
are applied mostly to reduce acoustic sound sources to simple emitter types. 
However, all these methods have their limitations. Due to the large domain 
required, DNS is often restricted to two-dimensional or axisymmetric sim-
ulations for aeroacoustic applications (e.g., Jiang et al. 2004; 2006). LES often 
becomes difficult due to the modeling of the near-wall flow region. Under 
this circumstance, DES becomes a viable option by combining RANS in the 
near-wall regions and LES in the main flow regions.

Terracol et al. (2006) performed a hybrid LES/RANS study of airframe 
noise prediction, which was focused on the first step of such hybrid meth-
ods. The unsteady aerodynamic noise sources were predicted by means 
of a 3D unsteady simulation of the flow. A zonal LES method based on 
the nonlinear disturbance equations (NLDE) was used for the numerical 
prediction of the aerodynamic noise sources. This method makes it pos-
sible to perform only zonal LES close to the main elements responsible 
for sound generation, while the overall configuration is treated only by a 
RANS approach. The zonal RANS/LES method was used to solve the set 
of the NLDE in order to reconstruct turbulent fluctuations around a given 
mean flow. The principle of the method is to decompose the conservative 
variables vector as a mean and a fluctuating part. Further details of the 
method can be found in Terracol et al. (2006). The flow over a thin flat plate 
ended by a blunted trailing edge is considered with four computational 
cases performed: (1) full LES—“FULL,” (2) nonreflecting inflow—“LAM,” 
(3) recycling perturbation treatment—“REC,” and (4) analytical turbulent 
boundary layer (TBL) model. Figure 8.3 shows a three-dimensional view 

Transition

Fully Developed
Turbulence

Wake Region

FIGURE 8.3 Three-dimensional view of the flow in the LES on the full 
configuration. (Terracol 2006; with permission from Springer-Verlag.)
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of the flow in the full configuration, therefore exhibiting its main physical 
features, including transition, fully developed boundary layers, and a 3D 
turbulent wake. As shown in Figure 8.4, the wake occurring at the trailing 
edge is responsible for the emission of an acoustic wave. Figures 8.5 and 
8.6 compare the physical features of the flow obtained in each case to the 
reference LES flow. It is to be noted that in the case of “LAM,” no turbulent 
structures are visible in the boundary layer, as might be expected. As a 
consequence, the level of three-dimensionality and turbulence in the wake 
looks slightly decreased in this case. However, for the two zonal simula-
tions “REC” and “ANA,” the flow looks very similar to the one obtained by 
the full LES and exhibits a highly three-dimensional behavior, with a good 
representation of the typical structures observed in TBL.

In another application, Terracol et al. (2005) presented hybrid meth-
ods for airframe noise numerical prediction. The three-dimensional, 

FIGURE 8.4 Acoustic wave emission at the trailing edge. (Terracol 2006; 
with permission from Springer-Verlag.)

FIGURE 8.5 Top view of the flow. Top left: LES on the full configuration; 
top right: LES with nonreflecting inflow; bottom left: LES with an addi-
tional recycling treatment for the perturbation; bottom right: analytical 
turbulent boundary layer model. (Terracol 2006; with permission from 
Springer-Verlag.)
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compressible, unsteady filtered Navier–Stokes equations are used to solve 
the flow of a Newtonian viscous fluid around a NACA0012 airfoil. The fil-
tering operator, classically defined as a convolution product on the compu-
tational domain, is assumed to commute with time and spatial derivatives. 
The LES is based on the discretization of the compressible Navier–Stokes 
equations on multiblock structured meshes by a finite volume technique. 
The Navier–Stokes equations are discretized using a cell-centered finite 
volume technique and structured multiblock meshes. The viscous fluxes 
are discretized by a second-order accurate centered scheme. For efficiency 
reasons, implicit time integration is employed to deal with the very small 
grid size encountered near the wall. An approximate Newton method is 
employed to solve the nonlinear problem. At each iteration of this inner 
process, the inversion of the linear system relies on the lower-upper sym-
metric Gauss–Seidel implicit method.

The 3D curvilinear computational grid is obtained by replication in 
the spanwise direction  of a 2D curvilinear structured grid made of two 
domains. Domain #1 is located upstream of the C-shaped trailing edge (TE), 
with 309 points along the airfoil body and 97 points in the radial direc-
tion. Domain #2 is located downstream from the TE, with 227 points in 
the  direction (including 35 points on the TE bluntness) and 103 points in 
the  direction. The computational grid schematic is shown in Figure 8.7. A 
nonslip condition is applied at the airfoil surface and a periodic condition 
is imposed in the spanwise direction. Nonreflecting characteristic bound-
ary conditions are applied for the far field. Moreover, a steady RANS com-
putation using Baldwin-Lomax models provides an initial flow solution. It 

FIGURE 8.6 Side view of the flow. Top left: LES on the full configuration; top 
right: LES with nonreflecting inflow; bottom left: LES with an additional 
recycling treatment for the perturbation; bottom right: analytical turbu-
lent boundary layer model. (Terracol 2006; with permission from Springer-
Verlag.)
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should be noted that the LES becomes naturally three-dimensional in the 
regions of laminar-to-turbulent transition, without requiring any artificial 
numerical triggering.

Figure 8.8 shows details of the instantaneous (left) and time-averaged 
(right) flow streamlines around the blunted trailing edge. Figure 8.9 shows 
instantaneous isovalues of the pressure fluctuations inside the flow. At 
every point of the LES grid, pressure fluctuations are computed by sub-
tracting the time-averaged pressure from the instantaneous pressure. 
Concentric waves are clearly observed near the TE, with a wavelength 
corresponding to the vortex shedding frequency. It is interesting to notice 
that the wave pattern corresponding to the vortex shedding noise vanishes 
at a half-chord from the airfoil, when, at the same time, larger wavelengths 
are observed much further on. This is explained by the radial stretching of 
the LES grid, which acts on the noise field as a low-pass filter. It is known 
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FIGURE 8.7 Schematic of the computational grid used for the airframe 
noise prediction. (Terracol et al. 2005; with permission from Springer-
Verlag.)
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FIGURE 8.8 The instantaneous (above) and time-averaged (below) flow 
streamlines at the trailing edge. (Terracol et al. 2005; with permission 
from Springer-Verlag.)
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FIGURE 8.9 Instantaneous isovalues of pressure fluctuations obtained 
from LES data. (Terracol et al. 2005; with permission from Springer-
Verlag.)
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that the propagation of an acoustic wave will not be correctly simulated if 
it is discretized by using less than four or six cells per wavelength.

An acoustic grid was derived from the LES grid, following specific con-
straints: (1) the homogeneity of grid refinement and (2) the average cell 
size (with respect to the smallest wave lengths). This acoustic grid is shown 
in Figure 8.10. The interior border, on which LES data will be injected in 
the Euler domain, follows the airfoil surface at an average distance of 1% 
of the chord length. The outer border of the acoustic domain is approxi-
mately one chord away from the airfoil, since it was checked that the mean 
flow is quasi-uniform beyond this distance. Figure 8.11 presents a closer 
view of this grid, near the airfoil.
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FIGURE 8.10 Final problem-adapted acoustic grid for the airframe noise 
prediction. (Terracol et al. 2005; with permission from Springer-Verlag.)
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FIGURE 8.11 Close-up of the final problem-adapted acoustic grid. (Terracol 
et al. 2005; with permission from Springer-Verlag.)
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Figure 8.12 shows isovalue contours of instantaneous pressure fluc-
tuation field computed from (1) LES, inside the injection interface, and  
(2) propagation via Euler equations under a small perturbation hypoth-
esis (from LES data injection) outside the injection interface. Figure 8.13 
shows a closer view of Figure 8.12 centered on the airfoil. This view shows 
that there is no discontinuity at the injection interface between the LES 
wave fronts and the wave fronts predicted by the Euler equations under a 
small perturbation hypothesis.

Different from the DES approach combining RANS and LES, there 
is also a modeling approach that lies between the RANS and LES 
approaches. Speziale (1998) proposed such a very-large-eddy simula-
tion (VLES) approach. In general, the simulation can be regarded as a 
VLES if the filter and grid are too coarse to resolve 80% of the energy. 

FIGURE 8.12 Coupled LES/Euler instantaneous pressure fluctuations. 
(Terracol et al. 2005; with permission from Springer-Verlag.)

FIGURE 8.13 Close-up of the coupled LES/Euler instantaneous pressure 
fluctuations. (Terracol et al. 2005; with permission from Springer-Verlag.)



236 n Numerical Techniques for Direct and Large-Eddy Simulations

This corresponds to a coarse-grid LES, which some have viewed as 
being equivalent to an unsteady RANS. VLES attempts to bridge the 
gap between the traditional RANS simulation and the traditional LES. 
This approach affords an intermediate resolution of turbulence scales 
relative to those of RANS and LES. In VLES, the very large scales of tur-
bulence are directly calculated, and the effects of the unresolved scales 
are accounted for by an eddy viscosity model that is evolved from state-
of-the-art models used in the RANS approach. The VLES is not a hybrid 
method like DES.

For the hybrid DES, although it seems to be a useful technique for the 
predictions of high Reynolds number, wall-bounded flows, a variety of 
open issues need to be addressed before one can rely on such a hybrid 
method. These include, in particular, the demand for appropriate cou-
pling techniques between LES and RANS, adaptive control mechanisms, 
and proper SGS-RANS turbulence models. For the wall boundary treat-
ment, the wall functions discussed in Chapter 2 are typical RANS CFD 
approaches in the near-wall region, which can be used in the hybrid 
method. In a hybrid DES approach, the quality of the numerical results 
depends on both the LES and RANS and their coupling. The final numer-
ical results of DES rely on LES and RANS turbulence modeling, the 
numerics, the coupling between the two approaches, and the wall bound-
ary conditions implemented in RANS modeling in the near-wall region.
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Appendix: FORTRAN 90 
Routines of the Finite 
Difference Schemes

Finite difference schemes are widely used in DNS and LES, which offers 
flexibility in the specification of boundary conditions. In addition, the par-
allelization of computer programs using finite difference schemes is rela-
tively straightforward. The computing costs of finite difference schemes 
are also generally lower than finite volume methods. Since upwind-biased 
schemes inherently introduce some form of artificial smoothing or dis-
sipation error that makes them inappropriate for long-time integration, 
central difference schemes that do not introduce artificial dissipation have 
been predominantly used in DNS and LES. Lele (1992) developed high-
order accurate, narrow-stencil, finite difference schemes appropriate for 
problems with a wide range of scales, known as the “compact” or Padé 
schemes. These centered schemes developed by Lele (1992) require small 
stencil support, which are of particular interest in DNS. The main advan-
tage of compact schemes is simplicity in boundary condition treatment 
and smaller truncation error compared to their noncompact counterparts 
of equivalent order, as described in Chapter 5. In this appendix, as an 
example of high-order finite difference schemes, Fortran 90 subroutines 
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of the Padé 3/4/6 scheme are presented first. In this Padé 3/4/6 scheme, the 
formal accuracy of sixth order holds in the interior of the computational 
domain. The scheme is of third-order accuracy at the boundary points, 
of fourth-order at the next-to-the-boundary points, and of sixth-order 
at inner points only. Modular Fortran 90 subroutines on the Padé 3/4/6 
scheme are given, including the subroutines that preserves the sixth-order 
accuracy at a symmetry boundary. Second, Fortran 90 subroutines on the 
second-order central differentiation are presented due to their wide appli-
cations in CFD including in LES, with two subroutines using a three-point 
stencil and a five-point stencil formulations respectively.

I. PADÉ 3/4/6 SCHEME
The Padé scheme has been widely used and now is the state-of-the-art 
numerical method in DNS codes for fluid flow and combustion problems. 
The main advantages of the Padé scheme are the low computing costs 
associated with the small-stencil support and the simplicity in boundary 
condition treatment. Lele (1992) systematically presented the Padé scheme. 
For the Padé scheme, at the boundary points or points near the boundaries, 
central differencing is not possible because points outside the computational 
domain cannot be included. Boundary closures of the Padé scheme inevi-
tably lead to the use of lower-order schemes for points near the bound-
ary. For the Padé 3/4/6 scheme discussed in Chapter 5 (also in Chapter 2), 
the formal accuracy of sixth order holds only in the interior of the com-
putational domain. In this formulation, the number of neighboring points 
involved on one side of the boundary points or points near the boundaries 
is the same as that of the inner points. The scheme is of third-order accu-
racy at the boundary points, of fourth-order at the next-to-the-boundary 
points, and of sixth-order at inner points only. The formula for the 
Padé 3/4/6 scheme were given in Equations (2.17)–(2.20). The applica-
tion of the Padé scheme also requires solving a tridiagonal matrix sys-
tem. For the Padé 3/4/6 scheme, the tridiagonal matrix inversion can be 
conveniently achieved by the Gaussian elimination known as the tridi-
agonal matrix algorithm (TDMA), or Thomas algorithm (Conte and de 
Boor, 1972). In a practical simulation, nonuniform grids may be used to 
solve the flow field more efficiently. Grid transformation can be used to 
link the physical domain and the computational domain. For both the 
first- and second-order derivatives, once the derivatives in the compu-
tational domain on an equally spaced mesh are obtained, derivatives in 
the physical domain with possibly nonuniform grid distribution can be 
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obtained using the metrics for grid transformation (Anderson 1995). As 
discussed in Chapter 2, the sixth-order accuracy of the Padé 3/4/6 scheme 
can be preserved at the symmetry boundary, by applying the symmetry 
conditions to both the primitive variables and their first- and second- 
order derivatives in the symmetry direction.

In the following, the Fortran 90 subroutines of the Padé 3/4/6 scheme 
in the computational domain are given. The subroutines consider a two-
dimensional field and give the first and second derivatives of a discretized 
function  on a grid with the number of points represented by (nx, ny). 
Apparently adaptation of the subroutines to one-dimensional or three-
dimensional problems is straightforward. In the following, subroutines, 
dx(f), dy (f), d2x(f), and d2y(f) give the output of the first and second 
derivatives in the  and  directions using the Padé 3/4/6 scheme with 
third-order boundary closures, respectively. In the meantime, subroutines 
dys(f) and d2ys(f) give the output of the first and second derivatives in the 
symmetric  direction preserving the sixth-order accuracy at the bound-
ary   0 for variables without a sign change across the symmetry bound-
ary (as given in Equation [2.15]) such as density , while subroutines 
dyv(f) and d2yv(f) give the output of the first and second derivatives in the 
symmetric  direction preserving the sixth-order accuracy at the bound-
ary   0 for variables with a sign change across the symmetry bound-
ary (as given in Equation [2.16]) such as density  velocity component . 
The modular subroutines given can be conveniently implemented into a 
Fortran code.

subroutine dx(f)
include ‘incl.for’
dimension f(nx,ny)
call dpadex(f)
return
end
!
subroutine dy(f)
include ‘incl.for’
dimension f(nx,ny)
call dpadey(f)
return
end
!
subroutine dys(f)
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include ‘incl.for’
dimension f(nx,ny)
call dpadys(f)
return
end
!
subroutine dyv(f)
include ‘incl.for’
dimension f(nx,ny)
call dpadyv(f)
return
end
!
subroutine d2x(f)
include ‘incl.for’
dimension f(nx,ny)
call d2padx(f)
return
end
!
subroutine d2y(f)
include ‘incl.for’
dimension f(nx,ny)
call d2pady(f)
return
end
!
subroutine d2ys(f)
include ‘incl.for’
dimension f(nx,ny)
call d2pdys(f)
return
end
!
subroutine d2yv(f)
include ‘incl.for’
dimension f(nx,ny)
call d2pdyv(f)
return
end
!
!-------------------------------------------------------
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! Subroutines for differentiation with Pade scheme in
! both x and y directions.
!-------------------------------------------------------
subroutine dpadex(f)
!
!     Lele’s Pade scheme 3/4/6 (6th order in interior)
!
include ‘incl.for’
!
dimension f(nx,ny)
dimension a(nx),b(nx,ny),c(nx),d(nx,ny),cc(nx,ny)
dimension x(nx),hx(nx),h2x(nx)
common /pade/ a0,b0,c0,a1,b1,c1
common /padx/ ds,a,c
common /mapx/ x,hx,h2x
!
do j=1,ny
!
b(1,j)    = 2.
b(nx,j) = 2.
  d(1,j)  = (-5.*f(1,j) + 4.*f(2,j) + f(3,j))/ds
d(nx,j) = (5.*f(nx,j) - 4.*f(nx-1,j) - f(nx-2,j))/ds
!
b(2,j)      = 4.
b(nx-1,j) = 4.
d(2,j)      = 3.*(f(3,j) - f(1,j))/ds
d(nx-1,j) = 3.*(f(nx,j) - f(nx-2,j))/ds
!
do i=3,nx-2
b(i,j) = a0
d(i,j) = 0.5*b0*(f(i+1,j)-f(i-1,j))/ds
d(i,j) = d(i,j) + 0.25*c0*(f(i+2,j)-f(i-2,j))/ds
end do
end do
!
call thomas(nx,ny,a,c,b,d,cc)
!
do j=1,ny
do i=1,nx
f(i,j)=d(i,j)/hx(i)
end do
end do
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!
return
end
!-------------------------------------------------------
subroutine dpadey(f)
!
!     Lele’s Pade scheme 3/4/6 (6th order in interior)
!
include ‘incl.for’
!
dimension f(nx,ny)
dimension a(ny),b(ny,nx),c(ny),d(ny,nx),cc(ny,nx)
dimension y(ny),hy(ny),h2y(ny)
common /pade/ a0,b0,c0,a1,b1,c1
common /pady/ ds,a,c
common /mapy/ y,hy,h2y
!
do i=1,nx
!
b(1,i)    = 2.
b(ny,i) = 2.
d(1,i)    = (-5.*f(i,1) + 4.*f(i,2) + f(i,3))/ds
d(ny,i) = (5.*f(i,ny) - 4.*f(i,ny-1) - f(i,ny-2))/ds
!
b(2,i)      = 4.
b(ny-1,i) = 4.
d(2,i)      = 3.*(f(i,3) - f(i,1))/ds
d(ny-1,i) = 3.*(f(i,ny) - f(i,ny-2))/ds
!
do j=3,ny-2
b(j,i) = a0
d(j,i) = 0.5*b0*(f(i,j+1)-f(i,j-1))/ds
d(j,i) = d(j,i) + 0.25*c0*(f(i,j+2)-f(i,j-2))/ds
end do
end do
!
call thomas(ny,nx,a,c,b,d,cc)
!
do j=1,ny
do i=1,nx
  f(i,j)=d(j,i)/hy(j)
end do
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end do
!
return
end
!-------------------------------------------------------
subroutine dpadys(f)
!
!     Lele’s Pade scheme 3/4/6 (6th order in interior)
!     for “twin” variables [phi(+y)=phi(-y)] of 
symmetrical domain
!     (6th order at y=0)
!
include ‘incl.for’
!
dimension f(nx,ny)
dimension a(ny),b(ny,nx),c(ny),d(ny,nx),cc(ny,nx),cys(ny)
dimension y(ny),hy(ny),h2y(ny)
common /pade/ a0,b0,c0,a1,b1,c1
common /pady/ ds,a,c
common /mapy/ y,hy,h2y
!
do i=1,nx
!
b(1,i) = a0
b(ny,i) = 2.
d(1,i)    = 0.5*b0*(f(i,2)-f(i,2))/ds
d(1,i)    = d(1,i) + 0.25*c0*(f(i,3)-f(i,3))/ds
d(ny,i) = (5.*f(i,ny) - 4.*f(i,ny-1) - f(i,ny-2))/ds
!
b(2,i)      = a0
b(ny-1,i) = 4.
d(2,i)      = 0.5*b0*(f(i,3)-f(i,1))/ds
d(2,i)      = d(2,i) + 0.25*c0*(f(i,4)-f(i,2))/ds
d(ny-1,i) = 3.*(f(i,ny) - f(i,ny-2))/ds
!
do j=3,ny-2
 b(j,i) = a0
d(j,i) = 0.5*b0*(f(i,j+1)-f(i,j-1))/ds
d(j,i) = d(j,i) + 0.25*c0*(f(i,j+2)-f(i,j-2))/ds
end do
end do
!
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do j=1,ny
cys(j)=c(j)
end do
cys(1)=0.0
!
call thomas(ny,nx,a,cys,b,d,cc)
!
do j=1,ny
do i=1,nx
f(i,j)=d(j,i)/hy(j)
  end do
end do
!
return
end
!-------------------------------------------------------
subroutine dpadyv(f)
!
!     Lele’s Pade scheme 3/4/6 (6th order in interior)
!     for “image” variables [phi(+y)=-phi(-y)] of 
symmetrical domain
!     (6th order at y=0)
!
include ‘incl.for’
!
dimension f(nx,ny)
dimension a(ny),b(ny,nx),c(ny),d(ny,nx),cc(ny,nx),cyv(ny)
dimension y(ny),hy(ny),h2y(ny)
common /pade/ a0,b0,c0,a1,b1,c1
common /pady/ ds,a,c
common /mapy/ y,hy,h2y
!
do i=1,nx
!
b(1,i)    = a0
b(ny,i) = 2.
d(1,i)    = 0.5*b0*(f(i,2)+f(i,2))/ds
d(1,i)    = d(1,i) + 0.25*c0*(f(i,3)+f(i,3))/ds
d(ny,i) = (5.*f(i,ny) - 4.*f(i,ny-1) - f(i,ny-2))/ds
!
b(2,i)      = a0
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b(ny-1,i) = 4.
d(2,i)      = 0.5*b0*(f(i,3)-f(i,1))/ds
d(2,i)      = d(2,i) + 0.25*c0*(f(i,4)+f(i,2))/ds
d(ny-1,i) = 3.*(f(i,ny) - f(i,ny-2))/ds
!
do j=3,ny-2
b(j,i) = a0
d(j,i) = 0.5*b0*(f(i,j+1)-f(i,j-1))/ds
d(j,i) = d(j,i) + 0.25*c0*(f(i,j+2)-f(i,j-2))/ds
end do
end do
!
do j=1,ny
cyv(j)=c(j)
end do
cyv(1)=2.0
!
call thomas(ny,nx,a,cyv,b,d,cc)
!
do j=1,ny
do i=1,nx
  f(i,j)=d(j,i)/hy(j)
end do
end do
!
return
end
!-------------------------------------------------------
subroutine d2padx(f)
!
!     Lele’s Pade scheme for 2nd derivative 3/4/6 (6th 
order in interior)
!
      include ‘incl.for’
!
dimension f(nx,ny),df(nx,ny)
dimension a(nx),b(nx,ny),c(nx),d(nx,ny),cc(nx,ny)
dimension x(nx),hx(nx),h2x(nx)
common /pade2/ a0,b0,c0,a1,b1,c1
common /pad2x/ ds,a,c
common /mapx/ x,hx,h2x
!
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do j=1,ny
do i=1,nx
df(i,j)=f(i,j)
end do
end do
!
call dpadex(df)
!
dsq=ds**2
!
do j=1,ny
!
b(1,j) =1.
b(nx,j)=1.
d(1,j) =(13.*f(1,j) - 27.*f(2,j) + 15.*f(3,j) - f(4,j))/
dsq
d(nx,j)=(13.*f(nx,j)-27.*f(nx-1,j)+15.*f(nx-2,j)-f(nx-
3,j))/dsq
!
b(2,j)   = 10.
b(nx-1,j) = 10.
d(2,j)   = 12.*(f(3,j) - 2.*f(2,j) + f(1,j))/dsq
d(nx-1,j) = 12.*(f(nx,j) - 2.*f(nx-1,j) + f(nx-2,j))/dsq
!
do i=3,nx-2
b(i,j) = a0
d(i,j) = b0*(f(i+1,j)-2.*f(i,j)+f(i-1,j))/dsq
d(i,j) = d(i,j) + 0.25*c0*(f(i+2,j)-2.*f(i,j)+f(i-2,j))/
dsq
end do
end do
!
call thomas(nx,ny,a,c,b,d,cc)
!
do j=1,ny
do i=1,nx
f(i,j)=d(i,j)/hx(i)**2-h2x(i)*df(i,j)/hx(i)**2
end do
end do
!
return
end
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!-------------------------------------------------------
subroutine d2pady(f)
!
!     Lele’s Pade scheme for 2nd derivative 3/4/6 (6th 
order in interior)
!
I include ‘incl.for’
!
dimension f(nx,ny),df(nx,ny)
dimension a(ny),b(ny,nx),c(ny),d(ny,nx),cc(ny,nx)
dimension y(ny),hy(ny),h2y(ny)
common /pade2/ a0,b0,c0,a1,b1,c1
common /pad2y/ ds,a,c
common /mapy/ y,hy,h2y
!
do j=1,ny
do i=1,nx
df(i,j)=f(i,j)
end do
end do
!
call dpadey(df)
!
dsq=ds**2
!
do i=1,nx
!
b(1,i) =1.
b(ny,i)=1.
d(1,i) =(13.*f(i,1) - 27.*f(i,2) + 15.*f(i,3) - f(i,4))/
dsq
d(ny,i)=(13.*f(i,ny)-27.*f(i,ny-1)+15.*f(i,ny-2)-f
(i,ny-3))/dsq
!
b(2,i)    = 10.
b(ny-1,i) = 10.
d(2,i)    = 12.*(f(i,3) - 2.*f(i,2) + f(i,1))/dsq
d(ny-1,i) = 12.*(f(i,ny) - 2.*f(i,ny-1) + f(i,ny-2))/dsq
!
do j=3,ny-2
b(j,i) = a0
d(j,i) = b0*(f(i,j+1)-2.*f(i,j)+f(i,j-1))/dsq
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d(j,i) = d(j,i) + 0.25*c0*(f(i,j+2)-2.*f(i,j)+f(i,j-2))/
dsq
end do
end do
!
call thomas(ny,nx,a,c,b,d,cc)
!
do j=1,ny
do i=1,nx
f(i,j)=d(j,i)/hy(j)**2-h2y(j)*df(i,j)/hy(j)**2
end do
end do
!
return
end
!-------------------------------------------------------
subroutine d2pdys(f)
!
!     Lele’s Pade scheme for 2nd derivative 3/4/6 (6th 
order in interior)
!     for “twin” variables [phi(+y)=phi(-y)] of 
symmetrical domain
!     (6th order at y=0)
!
include ‘incl.for’
!
dimension f(nx,ny),df(nx,ny)
dimension a(ny),b(ny,nx),c(ny),d(ny,nx),cc(ny,nx), 
c2ys(ny)
dimension y(ny),hy(ny),h2y(ny)
common /pade2/ a0,b0,c0,a1,b1,c1
common /pad2y/ ds,a,c
common /mapy/ y,hy,h2y
!
do j=1,ny
do i=1,nx
df(i,j)=f(i,j)
end do
end do
!
call dpadys(df)
!
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dsq=ds**2
!
do i=1,nx
!
b(1,i) =a0
b(ny,i)=1.
d(1,i) =b0*(f(i,2)-2.*f(i,1)+f(i,2))/dsq
d(1,i) =d(1,i)+ 0.25*c0*(f(i,3)-2.*f(i,1)+f(i,3))/dsq
d(ny,i)=(13.*f(i,ny)-27.*f(i,ny-1)+15.*f(i,ny-2)-f
(i,ny-3))/dsq
!
b(2,i)      = a0 
b(ny-1,i) = 10.
d(2,i)      = b0*(f(i,3)-2.*f(i,2)+f(i,1))/dsq
d(2,i)      = d(2,i) + 0.25*c0*(f(i,4)-2.*f(i,2)+f(i,2))/dsq
d(ny-1,i) = 12.*(f(i,ny) - 2.*f(i,ny-1) + f(i,ny-2))/dsq
!
do j=3,ny-2
b(j,i) = a0
d(j,i) = b0*(f(i,j+1)-2.*f(i,j)+f(i,j-1))/dsq
d(j,i) = d(j,i) + 0.25*c0*(f(i,j+2)-2.*f(i,j)+f(i,j-2))/
dsq
end do
end do
!
do j=1,ny
c2ys(j)=c(j)
end do
c2ys(1)=2.0
!
call thomas(ny,nx,a,c2ys,b,d,cc)
!
do j=1,ny
do i=1,nx
f(i,j)=d(j,i)/hy(j)**2-h2y(j)*df(i,j)/hy(j)**2
end do
end do
!
return
end
!-------------------------------------------------------
subroutine d2pdyv(f)
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!
!     Lele’s Pade scheme for 2nd derivative 3/4/6 (6th 
order in interior)
!     for “image” variables [phi(+y)=-phi(-y)] of 
symmetrical domain
!     (6th order at y=0)
!
include ‘incl.for’
!
dimension f(nx,ny),df(nx,ny)
dimension a(ny),b(ny,nx),c(ny),d(ny,nx),cc(ny,nx),c2yv(ny)
dimension y(ny),hy(ny),h2y(ny)
common /pade2/ a0,b0,c0,a1,b1,c1
common /pad2y/ ds,a,c
common /mapy/ y,hy,h2y
!
do j=1,ny
do i=1,nx
df(i,j)=f(i,j)
end do
end do
!
call dpadyv(df)
!
dsq=ds**2
!
do i=1,nx
!
b(1,i) =a0
b(ny,i)=1.
d(1,i) =b0*(f(i,2)-2.*f(i,1)-f(i,2))/dsq
d(1,i) =d(1,i)+ 0.25*c0*(f(i,3)-2.*f(i,1)-f(i,3))/dsq
d(ny,i)=(13.*f(i,ny)-27.*f(i,ny-1)+15.*f(i,ny-2)-f
(i,ny-3))/dsq
!
b(2,i)    = a0 
  b(ny-1,i) = 10.

d(2,i)    = b0*(f(i,3)-2.*f(i,2)+f(i,1))/dsq
d(2,i)      = d(2,i) + 0.25*c0*(f(i,4)-2.*f(i,2)-f(i,2))/
dsq
d(ny-1,i)  = 12.*(f(i,ny) - 2.*f(i,ny-1) + f(i,ny-2))/
dsq
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!
do j=3,ny-2
b(j,i) = a0
d(j,i) = b0*(f(i,j+1)-2.*f(i,j)+f(i,j-1))/dsq
d(j,i) = d(j,i) + 0.25*c0*(f(i,j+2)-2.*f(i,j)+f(i,j-2))/
dsq
   end do
end do
!
do j=1,ny
c2yv(j)=c(j)
end do
c2yv(1)=0.0
!
call thomas(ny,nx,a,c2yv,b,d,cc)
!
do j=1,ny
do i=1,nx
f(i,j)=d(j,i)/hy(j)**2-h2y(j)*df(i,j)/hy(j)**2
   end do
end do
!
return
end
!-------------------------------------------------------
!     tridiagonal solver
!     solves m systems of tridiagonal equations of size n
!     each system has identical sub- and super-diagonals 
but
!     their diagonals and rhs’s are different
!
subroutine thomas(n,m,a,c,b,d,cc)
!
dimension a(n),c(n),b(n,m),d(n,m),cc(n,m)
!
do j=1,m
v4=1./b(1,j)
d(1,j)=d(1,j)*v4
cc(1,j)=c(1)*v4
end do
!
do i=2,n-1
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do j=1,m
     v2=b(i,j)-cc(i-1,j)*a(i)

v3=d(i,j)-d(i-1,j)*a(i)
v1=1./v2
d(i,j)=v3*v1
cc(i,j)=c(i)*v1
end do
end do
!
do j=1,m
v5=b(n,j)-cc(n-1,j)*a(n)
v6=d(n,j)-d(n-1,j)*a(n)
v7=1./v5
d(n,j)=v6*v7
end do
!
do j=1,m
do ii=1,n-1
i=n-ii
d(i,j)=d(i,j)-cc(i,j)*d(i+1,j)
end do
end do
!
return
end
!-------------------------------------------------------
!     initialisation of Pade schemes
!
subroutine padeini
!
include ‘incl.for’
dimension x(nx),hx(nx),h2x(nx),y(ny),hy(ny),h2y(ny)
dimension ax(nx),ay(ny),cx(nx),cy(ny)
dimension a2x(nx),a2y(ny),c2x(nx),c2y(ny)
logical cyl_flg,sym_flg,buo_flg
common /mapx/ x,hx,h2x
common /mapy/ y,hy,h2y
common /pade/ a0,b0,c0,a1,b1,c1
common /padx/ dsx,ax,cx
common /pady/ dsy,ay,cy
common /pade2/ a20,b20,c20,a21,b21,c21
common /pad2x/ ds2x,a2x,c2x
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common /pad2y/ ds2y,a2y,c2y
common /input1/ xl,yl,bx,by
common /input8/ cyl_flg,sym_flg,buo_flg
!
! ---set constants
!
dsx = 1./real(nx-1)
dsy = 2./real(ny-1)
if (sym_flg) dsy = 1./real(ny-1)
ds2x=dsx
ds2y=dsy
!
a0 = 3.
b0 = (4.*a0+2.)/3.
c0 = (4.-a0)/3.
a1 = 16.*(2.*a0+1.)/(40.-a0)
b1 = (4.*a1+2.)/3.
c1 = (4.-a1)/3.
!
a20 = 5.5
b20 = 4.*(a20-1.)/3.
c20 = (10.-a20)/3.
a21 = a20
b21 = b20
c21 = c20
!
! ---set arrays for x differentiation
!
do i=2,nx-1
ax(i)=1.
cx(i)=1.
end do
do i=2,nx-1
a2x(i)=1.
 c2x(i)=1.
end do
!
cx(1)=4.
ax(nx)=4.
c2x(1)=11.
a2x(nx)=11.
!
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do i=1,nx
x(i)=xl*real(i-1)/real(nx-1)
hx(i)=xl
h2x(i)=0.
end do
!
! ---set arrays for y differentiation
!
do j=2,ny-1
ay(j)=1.
cy(j)=1.
end do
do j=2,ny-1
a2y(j)=1.
c2y(j)=1.
end do
!
cy(1)=4.
ay(ny)=4.
c2y(1)=11.
a2y(ny)=11.
!
!  Jiang & Luo’s grid stretching (TCFD, 2000)
!
rc=1.0
bs=( log ((1.0+(exp(by)-1.0)*rc*2.0/yl)/ &
(1.0+(exp(-by)-1.0)*rc*2.0/yl)))/(2.0*by)
do j=1,ny
s=-1.+2.*real(j-1)/real(ny-1)
if (sym_flg) then
s=real(j-1)/real(ny-1)
y(j)=rc*(1.0+sinh(by*(s-bs))/sinh(by*bs))
hy(j)=rc*by*cosh(by*(s-bs))/sinh(by*bs)
h2y(j)=rc*by*by*sinh(by*(s-bs))/sinh(by*bs)
else
y(j)=0.5*yl*sinh(by*s)/sinh(by)
hy(j)=0.5*yl*by*cosh(by*s)/sinh(by)
h2y(j)=0.5*yl*by*by*sinh(by*s)/sinh(by)
end if
end do
!
return
end



FORTRAN 90 Routines of the Finite Difference Schemes n 257

In the above subroutines, the grid stretching was the one used by Jiang 
and Luo (2000). In using the above subroutines, an external file “incl.for” 
to define the array size must be established, which may look like

! ‘include’ file for grid numbers
parameter(nx=1351,ny=360)
! end of include

II. SECOND-ORDER CENTRAL DIFFERENTIATION
The second-order central difference has been broadly used in CFD and 
its formulation can be easily found (e.g., Anderson 1995). In the following 
sample subroutines, a discretized one-dimensional function  on a grid 
with the number of points given by nn=10 is considered. Subroutine dxc2 
gives the output of the first and second derivatives using a three-point 
stencil, while subroutine dxstencil gives the output of the first and second 
derivatives using a five-point stencil. In both the subroutines, array xn 
represents the coordinate to be differentiated.

! --- Second order central differencing
!
Subroutine dxc2

!
parameter (nn=10)        
dimension xn(nn), derivc2(nn), deriv2c2(nn)
common /x/ xn
common /c2/ derivc2, deriv2c2

!
h=1./real(nn-1.)
hsq=h*h

!
! --- Second order forward and backward at boundaries
!     for first derivative
!
derivc2(1)=(g(xn(1)+h)-g(xn(1)))/h
derivc2(nn)=(g(xn(nn))-g(xn(nn)-h))/h

!
! --- Second order forward and backward at boundaries
!     for second derivative
!
deriv2c2(1)=(g(xn(1)+2*h)-2*g(xn(1)+h)+g(xn(1)))/hsq
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deriv2c2(nn)=(g(xn(nn)-2*h)-2*g(xn(nn)-h)+g(xn(nn)))/
hsq
!
do i=2,nn-1
derivc2(i)=(g(xn(i)+h)-g(xn(i)-h))/(h+h)
deriv2c2(i)=(g(xn(i)+h)-2*g(xn(i))+g(xn(i)-h))/hsq
end do

!
return
end

!
! --- Five-point stencil
!
Subroutine dxstencil

!
parameter (nn=10)
dimension xn(nn), derivst(nn), deriv2st(nn)
common /x/ xn
common /c5/ derivst, deriv2st

!
h=1./real(nn-1.)
hsq=h*h

!
! --- First derivative with forward and backward schemes
!     at the boundaries with central scheme at the next to 
!     the boundaries points
!
derivst(1)=(g(xn(1)+h)-g(xn(1)))/h
derivst(nn)=(g(xn(nn))-g(xn(nn)-h))/h

!
derivst(2)=(g(xn(2)+h)-g(xn(2)-h))/(h+h)
derivst(nn-1)=(g(xn(nn-1)+h)-g(xn(nn-1)-h))/(h+h)

!
! --- Second derivative with forward and backward 
schemes
!     at the boundaries with central scheme at the next to
!     the boundaries points
!
deriv2st(1)=(g(xn(1)+2*h)-2*g(xn(1)+h)+g(xn(1)))/hsq
deriv2st(nn)=(g(xn(nn)-2*h)-2*g(xn(nn)-h)+g(xn(nn)))/hsq

!
deriv2st(2)=(g(xn(2)+h)-2*g(xn(2))+g(xn(2)-h))/hsq
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deriv2st(nn-1)=(g(xn(nn-1)+h)-2*g(xn(nn-1))+g(xn
(nn-1)-h))/hsq
!
do i=3,nn-2
derivst(i)=(-g(xn(i)+2*h)+8*g(xn(i)+h)-8*g(xn(i)-h)&
+g(xn(i)-2*h))/(12*h)
deriv2st(i)=(-g(xn(i)+2*h)+16*g(xn(i)+h)-30*g(xn(i))&
+16*g(xn(i)-h)-g(xn(i)-2*h))/(12*hsq)
end do

!
return
end

REFERENCES
Anderson, John D. 1995. Th

. New York: McGraw-Hill.
Conte, Samuel D. and de Boor, Carl W. 1972. . New 

York: McGraw-Hill.
Jiang, X. and Luo, K. H. 2000. Direct numerical simulation of the puffing phe-

nomenon of an axisymmetric thermal plume. Th
 14: 55–74.

Lele, S.K. 1992. Compact finite-difference schemes with spectral-like resolution. 
 103: 16–42.





Index

A

accurate conservative level set (ACLS), 
212, 215–216

acoustic analogy, 229
Adams–Bashforth, 70, 73–76, 82, 90, 100, 

112, 157, 164
Adams–Moulton, 70, 73, 75–77, 100
adaptive local deconvolution method 

(ALDM), 201

B

backward differentiation, 76–77
backward differentiation formulae (BDF), 

76–77
Beam–Warming, 78, 107
boundary condition (BC), 9–10, 14–15, 

17–19, 23–24, 27–63, 84–86, 
90–93, 95, 99, 101, 108, 
111–112, 114, 118–120, 138, 
140, 146, 159, 172, 177, 
180–182, 188, 190, 193, 
218–219, 231, 236, 239–240

 convective, 35
 Dirichlet, 28–29, 43, 114
 far field, 28, 55–56, 231
 inflow, 17, 28–36, 39, 41–44, 55, 57, 

62–63, 99, 108–109, 112, 114, 
116, 120–121, 229–231

 mixed, 28, 85
 Navier–Stokes characteristic boundary 

condition (NSCBC), 28–29, 34, 
36–43, 45, 57, 62–63, 120, 188, 
193

 Neumann, 28, 43, 53
 Numerical, 17, 34, 36
 nonreflecting, 35–36, 38–39, 41, 56, 

108, 114, 229–231

 open, 55–57, 63, 106, 112, 119
 outflow, 28–29, 34–36, 42, 55, 57, 63
 periodic, 32, 57–58, 84, 86, 90, 93,  

95, 138
 pressure,  62–63
 “soft,” 34, 36, 120, 193
 symmetry, 55, 57–62, 240–241
 wall, 43–55, 236
Boussinesq, 12–13, 86, 88, 167, 186, 188, 

196
 approximation, 12–13, 86, 88
 assumption, 167, 188, 196
 hypothesis, 167, 186

C

cardinal polynomial, 96
characteristic wave, 34, 36–42, 57, 120
Chebyshev collocation, 81, 90, 96
Chebyshev polynomial, 86, 96–99
coordinates, 4, 6, 8, 11, 67, 84, 112, 119, 

159, 180, 221
 Cartesian, 3–4, 6, 8, 11, 82, 113, 119, 

157, 159, 168–169, 175, 179–180
 curvilinear, 8, 159, 180, 231
 cylindrical, 8, 84, 112, 180
 spherical, 8
compact finite difference, 58, 92, 108, 112, 

119, 140, 150, 223
compressible flow, 1, 8, 10–11, 13, 22, 28–29, 

35–36, 39, 41–43, 45, 55–56, 
62–63, 72, 75, 78, 103–108, 
138–139, 147–148, 171, 
185–187, 192, 195, 197–198, 218

continuity equation, 1–3, 7, 11–12, 69, 
99–100, 157, 196, 223

continuum surface force (CSF) model, 
212–213

Crank–Nicolson, 84, 215



262 n Index

D

delayed detached eddy simulation 
(DDES), 208, 228

detached eddy simulation (DES), 52–53, 
185, 208, 226–229, 235–236

DNS, 1, 8–10, 14–19, 22–24, 27–29, 
31–36, 39, 41, 43–47, 54–55, 
57–58, 62–63, 67, 69–74, 77,  
81–150, 155, 172–173, 175, 185, 
197, 202, 205–210, 217–219, 
223–225, 228–229, 239–240

E

eddy viscosity, 21–22, 49, 51, 163, 
167–170, 186, 188, 200–201, 236

eigenvalue, 56, 127–130, 200
eigenvectors, 128
elliptic, 9, 12, 27, 43, 72
energy equation, 1–4, 7–8, 10–12, 53–54, 

104, 112, 119, 156, 170, 175, 
179, 196

entropy splitting, 147
essentially non-oscillatory (ENO), 73, 

107, 147
Euler equation, 7–8, 36, 42, 56–57, 78, 

106–107, 110, 146, 198, 219, 
234–235

F

Favre filter, 186, 188, 192, 195–197
filter, 19–21, 30, 45, 147, 156, 159, 166–171, 

180, 186, 188, 192, 195–197, 
202, 225, 231–232, 235

filter kernel, 20, 166
finite difference, 53, 58, 77–78, 81, 84, 

90–93, 98, 108, 112, 119, 138–150, 
155, 173–174, 181–182, 206, 
213, 218, 223, 239

finite element, 58, 93, 218
finite volume, 58, 77, 91, 93, 104, 138, 

149–150, 155, 164, 169, 173, 
179–180, 182, 188, 200, 218–220, 
223–224, 231, 239

flapping mode, 32
flux vector splitting (FVS), 198–200 
Fourier transform, 30, 127
fractional step method, 84, 88, 90, 99–101, 

164, 181

G

Galerkin method, 91, 94
Gaussian elimination, 101, 141, 240
ghost fluid method (GFM), 213, 216
Godunov-type, 107, 198, 200
Grashof number, 86

H

high-order numerical scheme, 17–18, 
22, 28, 34, 41, 55, 62, 71, 75, 
78, 90–92, 99, 108, 138–140, 
143, 145–150, 155, 200, 202, 
218–219, 239

hyperbolic, 9, 36, 42, 56, 73, 78, 106–108, 
143, 212–215

I

immersed boundary (IB) technique, 155, 
172–173, 179–182

implicit large eddy simulation (ILES), 187, 
195, 197–202

incompressible flow, 1, 8, 10–13, 20, 22, 
29, 35, 42–43, 51, 63, 69, 72, 
75, 78, 81–101, 103–104, 139, 
155–182, 186–187, 197, 211

isotropic, 14, 27, 82, 168, 197, 201

K

Kolmogorov, 14–15, 19, 22, 82, 107, 111, 
163, 172, 202, 226

 length scale, 15, 111, 163
 time scale, 15
 velocity scale, 15

L

Laplacian, 11, 82, 147
Lax–Wendroff, 78, 107, 188
LES, 1, 8, 9–10, 16–24, 27–29, 31–36, 

39, 41, 43–47, 50–55, 57–58, 
62–63, 67, 69–74, 77, 155–202, 
205–210, 219, 223–236, 239–240

LES-NWM, 45, 54
LES-NWR, 45, 54
level set, 211–215



Index n 263

linear eddy mixing (LEM), 22, 171–172, 
226

local one-dimensional inviscid (LODI), 
34, 39–42, 57

M

MacCormack, 78, 107
momentum equation, 1–3, 7–8, 11–12, 43, 

51, 53, 69, 100, 170, 180, 196, 
216, 223

monoscale, 209
monotonically integrated LES (MILES), 

198, 200–201
matrix inversion, 92, 139, 141–142, 240
multigrid, 77, 164, 181, 209, 216
multiphase flow, 8, 22, 159, 172, 181, 

207–208, 210, 213–214, 
217–218, 225

multiscale, 207, 208–211, 217, 228

N

Navier–Stokes, 1, 3, 7–9, 11, 13, 19–20, 
27–28, 33–34, 36, 39, 41–42, 
52, 56–57, 69, 81, 86, 88, 91–92, 
100, 108, 112–113, 119–120, 
139, 146–147, 156, 159, 
166–167, 170, 178, 180, 186, 
188, 192, 196, 198, 205, 209, 
216, 219, 231

near-wall, 23, 44–47, 49–55, 83, 118, 136, 
169–170, 227, 229, 236

O

ordinary differential equations (ODEs), 
67–68, 70, 72

P

Padé scheme, 58–60, 92, 140–148, 
239–257

parabolic, 9, 27, 67, 78, 107
partial differential equation, 3, 9, 27, 78, 

107
perturbation, 31–35, 58, 108, 123, 162, 

165–166, 229–231, 235
Poisson equation, 11–12, 43, 51, 69, 72, 

75, 78, 81–82, 90, 100–101, 164, 
177–179, 216

Prandtl number, 18, 54, 84–86, 121, 171, 
196

precessing vortex core (PVC), 117–118, 
123, 126–127, 134, 136–137

predictor–corrector, 76, 78, 157, 178
pressure Poisson equation (PPE), 43, 69, 

72, 75, 78, 100–101, 179
projection method, 99, 164, 174, 181
proper orthogonal decomposition (POD), 

31, 108, 122, 127–134
pseudospectral, 93, 95–96, 99
random data, 30 

R

RANS, 1, 10, 16–17, 19–21, 23–24, 28–29, 
34, 41, 44–46, 50–53, 55, 155, 
162, 166–168, 170, 185–186, 
195, 210, 224–225, 227–229, 
231, 235–236

reacting flow, 8, 12, 22, 42, 54–55, 104, 
116, 118, 121, 123, 126, 155, 
159, 170–172, 187, 195, 
207–208, 210, 218, 225–226

Reynolds number, 15–18, 31, 47, 52–53, 
81, 84, 90, 138, 162–163, 182, 
185, 201, 205–207, 218, 226, 
236

 turbulent Reynolds number, 15
root mean square (RMS), 15, 30, 32, 228
Runge–Kutta (RK), 70–74, 84, 108, 114, 

119, 192, 199
 low storage, 71, 114
 RK3, 71–73, 75
 RK4, 71–73

S

Schmidt number, 18, 171
shock capturing, 106–107, 147–148, 

200–201
shock fitting, 106
shock wave, 6, 72–73, 75, 78, 105–108, 

148
Smagorinsky constant, 168, 197
Smagorinsky model, 22, 156, 163, 

168–169, 196–197
Spalart–Allmaras (S–A), 227
spatial discretization, 69, 73, 81, 90–99, 

113, 138–150, 173, 175, 187



264 n Index

spectral method, 17, 57, 86, 90, 93–99, 
101, 111, 119, 138–140, 150, 
155, 173, 218

 pseudospectral method, 93, 95–96, 
99

spectral element, 218–219
spectral finite volume, 219–223
spectral volume (SV), 91, 149–150, 206, 

219–220, 223
sponge layer, 35–36, 42, 112, 114
stochastic fluctuation, 30–31
subgrid scale (SGS), 16–17, 19–23, 53, 

155, 163, 166–172, 186–188, 
196–197, 200–202, 217, 
224–226, 236

subsonic, 37, 40, 56, 103–105, 108, 
187–188, 193

supersonic, 56, 105–106, 187–188, 
190

T

temporal integration, 67–79, 90, 187
Thomas algorithm, 101, 141, 240
time advancement, 84, 90, 99, 101, 108, 

157, 178
time integration, 16, 24, 67–79, 82, 84, 88, 

90, 92, 99, 101, 113, 138–139, 
147, 172–173, 188, 199, 215, 
231, 239

 explicit, 16, 67–79, 82, 84, 119, 157, 
164, 178, 188, 192, 199

 implicit, 67–79, 82, 84, 157, 215, 231

total variation diminishing (TVD), 73, 75, 
107, 198, 200

tridiagonal matrix algorithm (TDMA), 
101, 141–142, 240

U

unstructured grid, 155–156, 159, 169, 
172–182, 219, 224

unstructured mesh, 155, 172–182
upwind scheme, 92, 139

V

very large-eddy simulation (VLES), 45, 
225, 235–236

volume of fluid (VOF) method, 211–212

W

wall-adapting local-eddy viscosity 
(WALE), 163, 169, 188

wave amplitude, 36–42
wave front, 235
wavelength, 142, 232, 234
wavenumber, 30, 141–142, 148–149, 163
wave pattern, 232
well-posedness, 34, 41
weighted ENO (WENO), 73, 78, 147–148
white noise, 30, 33

Z

zonal approach, 23, 50–52
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